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Abstract 

 
Control systems are found in many aspects of modern life.  From household appliances such as 

computer controlled ovens and refrigerators to complex missile defense systems, the popularity 

and importance of automated controllers has grown exponentially over the past few decades [28].  

This thesis proposes to develop a simulation framework that can be used in the development of 

such digital control systems in academic environments.   

Control Systems Design is a common subject for engineering students world-wide.  Many tools 

exist to help students design and simulate digital controllers, such as MATLAB and SIMULINK, 

but actually implementing and testing a designed controller is important as well.  Students learn 

far more from their studies when they have an actual laboratory experiment to help relate the 

abstract concepts of engineering to the real life design problems [32].  A number of simplified 

physical systems such as the inverted pendulum and digital servo are common in academic 

environments, but designing controllers for more practical systems is difficult due to the 

prohibitive costs associated with the equipment involved [21]. 

Most simulation frameworks readily available for students focus on the controller itself.  They 

aid in design of the controller‟s mathematical model, but do not aid in physically testing the 

actual implementation of the controller.  The Control System Plant Simulator will simulate the 

object a digital control system designer wishes to control – referred to as a „Plant‟.  The Control 

System Plant Simulator follows the Hardware-in-the-loop concept [16] in that it takes the place 

of a physical plant.  Designed and implemented controllers are attached to the Control System 

Plant Simulator, which will behave just as an actual plant will from the viewpoint of the 

controller.  The simulator will read input from a digital controller external to the host computer 

of the simulator.  It will evaluate the input in real-time, and provide output to the digital 

controller just as the actual plant will.   

The Control System Plant Simulator can be used to aid in the development of control systems.  

Individuals can use the tool to prototype control systems without being forced to use expensive 

or limited physical resources.  This can reduce production costs of control systems, and make 

possible more realistic control systems development in academic environments where resources 
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are more limited.  This allows for the education of the next generation of control system 

designers and implementers in a more realistic setting. 
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Glossary 
 

Component:  Basic element of the Framework.  The components of the Framework are the User 

Interface, the Plant Simulation Unit (PSU), the File I/O Unit, the Physical ports and the 

Pseudo ports. 

Controller:  External to the framework, the controller is any system designed to produce input 

signals for the framework for the purpose of controlling the active simulated plant.   

Engineering Units:  See Plant Engineering Data.  

File I/O Unit:  Component responsible for writing output and status to files. 

Framework:  The system as a whole.  Framework refers to all of the components and the 

interfaces between them. 

Interface:  The communication that is allowed to take place between any two components   

I/O Specification:  An I/O Specification is a set of parameters that divide the physical binary 

ports into smaller labeled „virtual‟ ports, and scales analog port input to plant engineering 

values. 

Physical Data Values:  Data as it appears on the physical data registers.   

Physical Port:  Physical ports are the software representations of the physical interfaces of a 

connected data acquisition unit.  Input physical ports read data from the hardware interface 

and store it as a physical data value.  Output physical ports write physical data values to the 

hardware interface.  Physical ports may be either input or output, and may provide or accept 

either digital or analog data. 

Plant:  Any physical object that is to be controlled.  For the purposes of this program, „Plant‟ 

will refer to the simulation of such an object.   

Plant Definition Mode:   Framework operation mode when the user is allowed to define and 

modify the parameters that specify the simulated plant. 

Plant Definition Type:  A specific methodology by which a plant has been defined.  Examples 

include State Space defined plants or Transfer Function defined plants. 

Plant Engineering Data:  Data that has been formatted for the simulated plant. 

Plant Simulation Unit (PSU):  Responsible for simulating a defined plant.  Takes plant 

engineering data values from the Pseudo input ports, uses them to evaluate the internal 

simulated plant, and provides output, as plant engineering data values, to the Pseudo output 

ports. 
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Pseudo Port:  Pseudo ports provide the bridge between physical ports, and the inputs and 

outputs of a plant.  Each Pseudo port is connected to an input or output of the plant, and one 

physical port.  Input pseudo ports are responsible for converting the physical data values 

provided by physical ports into plant engineering data that is meaningful to the plant.  Output 

pseudo ports are responsible for converting plant engineering data provided by the plant back 

into physical data values that can be sent to the hardware interface by the physical ports. 

Pseudo ports may be Digital Physical Ports may be divided into smaller ports.  

Simulation Cycle:  The Simulation Cycle consists of acquiring a set of inputs from the external 

data acquisition device.  These inputs are formatted by pseudo ports into plant engineering 

data values and provided to the PSU.  The PSU uses these inputs to define a new set of 

outputs based on executing the defined plant model for one cycle.  These engineering units 

are returned to a pseudo port to be converted back into physical data.  Physical output is 

forwarded to the physical port connected to the pseudo port that performed this conversion.  

This data is sent to the physical interface by the physical port.  This cycle is repeated until the 

simulation is stopped.  

Simulation Mode:  Framework operation mode when simulation cycles are executed.  The user 

can do nothing in this mode but stop the simulation. 

User Interface (UI):  This component provides the framework‟s external interface for control of 

the plant simulation and to monitor plant operation.   
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1. Introduction and Motivation 
 

This thesis focuses upon the study of control systems, the plants they are designed to control, and 

real time simulation.  It provides a low-cost flexible plant simulator that can be used for the 

development of digital controllers.  Furthermore, this plant simulator provides benefits in 

academic teaching and research environments. 

Digital Controllers are control systems that are implemented using digital computers to control a 

subject system, called a plant.  Figure 1 shows a typical digital control system.  An input signal 

r(t) is supplied, indicating to the control system what the desired output of the plant should be.  

This input is sampled through the use of an analog to digital converter.  The difference of this 

signal and the discrete output of the plant is provided to the controller.  The controller takes an 

input signal and generates a control command using a difference equation.  This difference 

equation can be expressed in the frequency domain (after taking Z-transforms) as a transfer 

function provided that all initial conditions are zero.  The digital output of the controller is 

converted to analog signals through the use of a digital to analog converter and provided to the 

plant.  The plant will use these values to control its actuators.  Sensors monitor the controlled 

variable of the output to close the loop. [24] 

 

Figure 1.  Typical Digital Control System [24] 
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Control System simulators have been developed in the past.  The Shadow Plants Dynamic 

Simulation Testbed by Honeywell is an example of one such simulator [29].  However, these 

simulation systems are typically tailor-made for specific situations, products, or markets.  

Additionally, they can be prohibitively expensive, which reduces their ability to be widely 

adopted.  They often lack the flexibility required for extendable interfaces (both user interfaces 

or data interfaces).  Oftentimes specific information about the controller to be designed is 

required before these tools can even be used, and rarely are they designed to be connected to 

external controllers.  The vast majority of these simulators are designed to enable the design of 

the theoretical controller, and not for testing the implemented design. 

The Control System Plant Simulator developed here addresses the following issues:   

 

 Current plant simulation frameworks are very expensive.  The Control System Plant 

Simulator is an open source project, provided at no cost. 

 Most simulators are designed to simulate the Control and the plant together.  They 

simulate the mathematical models of each, and provide information about how these 

models interact.  While extremely helpful during initial design phases, these simulators 

can not test the implementation of these designs.  The Control System Plant Simulator 

runs a hardware-in-the-loop simulation that takes the place of a physical plant.  It is 

designed to be connected to an implemented controller, and behave as a real plant would.  

This eliminates the expense or danger of testing actual equipment, while fully exercising 

the implemented controller. 

 Hardware-in-the-loop test simulations have been made for specific situations, products, 

or markets.  The Control System Plant Simulator provides a general framework upon 

which plants of different natures may be simulated by simply providing a model of the 

plant.   

 The Control System Plant Simulator is extendable in that user interfaces, plant 

descriptions, and physical interfaces may be updated or customized with little difficulty.  
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The open source nature of the project ensures that deeper and more complex 

customizations are possible. 

 Most hardware-in-the-loop simulators require specialized equipment or test boards to run.  

The Control System Plant Simulator is a Windows XP application.  A port of the 

computation portion of the simulator utilizing Ardence RTX
®
 Real-time Extension for 

Control of Windows
®
 is provided for Real-Time simulation.  While the initially designed 

plant simulator was tailored to a particular data acquisition board, the simulator is flexible 

enough that other data acquisition boards can be substituted with minimal modifications. 

 

The Control System Plant Simulator is designed with academic environments in mind.  It is 

of the utmost importance for students to be able to implement their designs as physical 

controllers, but it is often too expensive to test these controllers on physical targets.  The targeted 

plant may be expensive, fragile, limited, or dangerous.  The Control System Plant Simulator 

(CSPS) can be used in place of this equipment, and provide results for the students to monitor 

and determine the success of their controller design.  Because of the low cost goal, the system 

may be used to prototype controllers developed by each student individually.  This allows 

students the ability to work on controllers, correcting mistakes as they go, without the constant 

use of limited or unavailable lab equipment.  The CSPS is designed to simulate many different 

kinds of plants, and as such has a flexible front end.  The graphical user interface may be 

swapped out for any other designed by end users and implementers.  These interfaces may be 

used to display animated versions of the plant (such as watching the level of water in a tank raise 

and lower) and are designed such that there is no impact to the system simulation.  Section 

3.1.1.1.2 describes UI Interchangeability in greater detail.  The CSPS is designed to be portable.  

All operating system calls are abstracted in a separate OS Layer.  Should an operating system 

change be necessary, only this layer will need to be altered. 

 

 The importance of simulating a designed digital controller is self evident.  Simulation 

enables the designer to see what is going to happen before spending considerable effort 

implementing a design, or putting expensive equipment – and potentially human life – at risk 

with an untested design.  However, one cannot ignore the physical experimentation phase of 

design altogether.  In their paper “Theory, simulation, experimentation:  an Integrated Approach 
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to Teaching Digital Control Systems”, Harold Klee and Joe Dumas go to great pains to outline 

how important it is to both design and implement controllers [23].  They argue that “The 

combination of hands-on experience and computer simulation with the more traditional 

theoretical lecture material provides a well-rounded learning experience that better prepares the 

students to implement digital control systems in the real world” [23].  They describe a three step 

course for undergraduate students that begins with theory and how to design a digital controller 

mathematically.  The controller the students design is then simulated to work out any problems 

with their theoretical design.  Finally the controller is implemented and connected to real 

physical hardware.  This „start-to-finish‟ design and implementation is invaluable to students as 

it provides the whole picture. 

 This argument for making sure that students implement their controller designs and 

attempt to actually run their controllers on plants has been made a number of times.  In their 

paper “Merging Physical Experiments Back Into The Learning Arena”, Bjarne A Foss, Tor I 

Eikass, and Morten Hovd bemoan the recent trend “towards increased use of simulation in 

engineering education, coupled with a decline of the use of physical experiments.”[12]  They 

admit that the expense of physical equipment is prohibitive, but outline a number of reasons why 

it is important to implement the controllers they design.  “The typical student therefore finds it 

motivating to work with laboratory experiments.  A successful laboratory experiment is some 

proof that the student has been able to perform a task which is of relevance to the real 

world.”[12]  This argument is central to the purpose of this thesis.  Simply simulating a 

theoretical controller is insufficient when learning control systems.  One must attempt to build 

the controller, and make it actually control something.  The CSPS is not a physical controller, but 

it behaves as one.  To the student developing a controller, the CSPS must be treated exactly the 

same as a physical controller.  The student must produce a controller that produces output and is 

insensitive to time delays, noise, and many other physical characteristics that are not present 

when simulating the control-plant interaction as a set of transfer functions. 

 The purpose of this thesis is to simplify the physical requirements for the experimentation 

phase of control systems education.  Academic institutions often are forced to choose between 

asking students to design controllers for low-cost plants that are too simple to be realistic, or 

never attempting to control anything at all, relying entirely on simulations.  This thesis provides 
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a framework upon which a plant may be created and run on a Windows XP environment, with 

the option of running in real time should a user decide to use Ardence RTX
®

 Real-time 

Extension for Control of Windows
®
.  This plant simulation may be used in place of a real 

physical plant, making physical equipment less important.  Students may perfect their designs at 

their own workstations without the need of additional equipment.   
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2. Background  
 
The following section provides background necessary to understand the concepts upon 

which the Control System Plant Simulator is based on.  Basic information about Control 

Systems, Real Time Simulation, and Hardware-In-The-Loop simulation are provided.   

 

2.1 Control Theory 
 

2.1.1   Introduction 
 

Control Theory is the study of how to automate the control of a dynamic system.  The 

system under control, referred to as a plant, may have any number of variables that must be 

controlled.  These controlled variables could be, for example, the speed of a car, the temperature 

of a room, or the physical level of water in a tank.  Control designers develop controllers that are 

connected to the plant.  These controllers set inputs and provide resources to the plants in such a 

way that the plant provides outputs at desired levels.  For example, an automobile cruise control 

system regulates the throttle position in order to produce a desired speed.  In any case, some 

input must be provided to the controller to indicate the desired plant output.  This input is 

referred to as a reference, or set point value [28]. 

 Sometimes, feedback is required to stabilize the plant.  Feedback occurs when the output 

from the plant is provided to the controller.  This allows the controller to monitor the response of 

the plant and determine how much the plant‟s output differs from the desired output [14].  See 

figure 2 for details. 

 

Controller Plant
Controlled Variable+

-

Set Point Value

Control 

Signal

Feedback

 

Figure 2:  Control System Block Diagram 
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2.1.2    Transfer Function 
 

In order to develop controllers, a designer must have some idea of how a plant will 

respond to the inputs provided.  This means that the plant must be modeled mathematically.  

Equations must be developed that describe how the output of the plant is generated given an 

input.  These are typically high order ordinary differential equations.  If the differential equation 

is linear and time invariant, then it can be solved using Laplace transforms.  The ratio of the 

Laplace transform of the output or response function to the Laplace transform of the input or 

driving function is referred to as a transfer function [14].  Transfer functions provide a compact 

and convenient description of linear time invariant systems, and they can be easily obtained from 

the dynamic equations that describe the system. 

 

For example, Equation 1 provides a general differential equation mapping input x to output y that 

may define a plant to be controlled.   

 

 

 

 

The transfer function for this system is obtained by taking the Laplace Transforms of Equation 1 

assuming zero initial conditions.  This is shown in Equation 2, which simplifies to Equation 3. 
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This allows a plant to be described as a rational function of the complex variable s instead of a 

differential equation.  Such a system is referred to as an nth order system, with n being the 

highest power of s in the denominator [14].  It is important to note that a transfer function can 

only map one input to one output.  In order to describe a plant that has more than one input or 

output using transfer functions, a matrix of transfer functions must be used. 

 

One may also factor the numerator and denominator polynomials that make up the transfer 

function, and express the transfer function as a product of factors, also called the zero-pole-gain 

form: 

 

 

 

where K is a scalar constant referred to as the gain, the set of zi are the zeros of the 

system, and the set of pi are the poles of the system.  Note that these poles and zeros may be 

complex numbers.  However for the system to be implementable, all complex poles or zeros 

must come in complex conjugate pairs [31]. Poles and zeros are helpful when analyzing the 

response of the system the transfer function represents.  They are used in the design of 

controllers, and to study the stability, causality, phase, and other factors of the system [14].   

 

2.1.3    State Space Equations 
 

As noted earlier, defining systems with multiple inputs and multiple outputs (MIMO) in 

terms of transfer functions is cumbersome, as the number of transfer functions required is equal 

to the number of inputs multiplied by the number of outputs.  More common is the use of a set of 

state space matrices.  Ogata defines the term state to be “the smallest set of variables (called state 

variables) such that the knowledge of these variables at t = t0, together with the knowledge of the 

input for t ≥ t0, completely determines the behavior of the system for any time t ≥ t0” [28]. That 

is, the current output can be determined as a function of the current states and the current set of 

inputs.  Additionally, the next state can be determined as a function of the current state and 

current set of inputs as well.   
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If x is a vector of n state variables, and u is a vector of r inputs, then the state equations are 

defined by 

 

 

 

 

 

 

 

and the outputs y1(t), y2(t), … ym(t) are 

 

 

 

 

 

 

 

 

If the system is linear and time invariant, the state space equations become 

 

 

 

 

Here, A is the State Matrix, B is the Input Matrix, C is the Output Matrix, and D is the 

Feedthrough Matrix.  The following diagram shows the relationship of these matrices and the 

inputs and outputs of the system: 
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Figure 3:  Block Diagram of State Space Matrices [28] 

 

One notes that equation 9 relates the state space equations back to the transfer function of the 

system. 

 

 

 

2.1.4    Converting Transfer Functions to State Space 
 

Transfer functions can be converted to state space equations in order to simplify their 

evaluation.  A realization is a set of state space equations equivalent to a given transfer function.  

There are infinitely many state space realizations for a transfer function.  Of the many possible 

realizations, the “Controller Canonical Form” is one of the simplest since it can be found directly 

from the coefficients of the transfer function.  However, the resulting state-space matrices are not 

suitable for numerical computations.  [14].   

 

Consider the following n order system 

 

 

Note that some of the  but not all, may be zero as the numerator does not have to have 

the same order as the denominator. 
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 The denominator can be normalized  by dividing every element by , as shown in 

equation 11. 

 

 

 

 Note that the system has only one input and one output, and that  will equal 0 unless 

the order of the numerator is equal to that of the denominator. 

The State matrix is obtained by taking the negative of each coefficient in the 

denominator, ignoring the coefficient of the leading term, and placing them in the first row to 

form a companion matrix as follows: 

 

 

 

 The Input matrix has a 1 as its very first element, all others are 0 

 

 The output matrix values are equal to the original numerator values – the denominator 

values (skipping the first) scaled by . 

 

 

 

 Finally, the feedthrough matrix consists of only one element of value . 

 [13] 

 

 

Equations 12 – 15 form the “controller‟ realization of the transfer function given. 
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2.1.5    Discrete-Time Systems 
 

With the adoption of the microprocessor, more and more systems are controlled digitally.  

This means that the input of these systems is not read continuously, but rather at discrete time 

intervals.  Likewise, new output values are calculated at discrete time intervals.  Typical Digital 

to Analog Converters (DACs) operate as a zero order hold, meaning these outputs are held 

constant until they are recalculated.   

 

 

Figure 4:  Digital Control System 

 

To reflect these differences, instead of using the Laplace transform, the Z transform is used.   

 

Due to quantization in the analog to digital converter, uk is an approximation of the value of u(t) 

at time kT where T is the sampling period.  There are numerous methods by which a system may 

be descretized, including the forward rectangular, the backward rectangular, and bilinear 

methods [13]. 

 

The Z transformed transfer function is still expressed as a ratio of two polynomials, and can still 

be described in terms of poles and zeros.  State space equations may be used to describe the 

transfer function (or functions) as well.  Instead of the continuous values, discrete state space 

equations calculate the values at discrete time instants. 
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where k is the specific time index. [13] 

 

2.1.6    Converting Continuous Time to Discrete Time Systems 
 

Calculating discrete equivalents of continuous systems is commonly done by various 

approximations.  The actual Z transform is simply the Laplace transform of the ideal sampled 

function.  The forward rectangular, backward rectangular, and bilinear sampling approximation 

methods result in the following substitutions to convert a Laplace transformed continuous system 

to a Z transformed discrete system: 

 

Table 1:  Discrete Equivalence Equations 

Discrete Equivalence Equations 

Forward Rectangular 
 

Backward Rectangular 
 

Bilinear 
 

 

In order to discretize a set of state space equations, start with the original state space equations 

defined in Equations 7 and 8, and perform a Laplace transform on it, yielding 

 

 

 

 

One may substitute for s as per equations 19, 20, and 21, convert to discrete equations, and solve 

for x(k+1) and y(k).  Doing so results in the following discrete equivalent state space equations: 
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Forward Rectangular: 

 

 

 

Backward Rectangular: 

 

 

 

Bilinear: 

 

 

[13] 

 

It is worth noting that the Forward Rectangular method is the least stable, and may require very 

high sampling rates to yield acceptable results. 

 

2.1.7    Nonlinear Systems 
 

All of the previous examples hold true for linear equations. However, there are many 

situations where the state equations described in Equations 7 and 8 are nonlinear.  That is, 

systems for which the principle of superposition does not apply [28].  There is no simple 

equation for simulating nonlinear systems:  the response to two inputs cannot be calculated by 

treating one input at a time and adding the results.  To handle this problem, such systems can be 

approximated by linear equations for a particular operating region.  In actuality, truly linear 

physical systems are rare.  Many electromechanical, hydraulic, and pneumatic systems  are only 

linear for limited operating ranges.   

Consider a one dimensional system .  The function  is represented by a 

curve, and the tangent at a given point   represents a linear approximation of the function at 
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that point.  Thus, 

 [3] 

 

 

Figure 5:  Linearization of Nonlinear Equation [3] 

 

 This process remains the same as the dimensions of the system increase.  The state space 

equations of a linearized system then become 

 

Where .  [3] 

This version of the simulator only simulates linear time-invariant systems. 
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2.2 Real Time Systems 
 

A real-time system is a system that performs operations under specific timing constraints 

imposed on it by the real-time behavior of the „outside‟ world [35].  Real time systems must 

produce results and perform actions that are both correct, and delivered within very specific time 

constraints.  Reading an input line, or writing to an output line must be done while the data is 

still meaningful.  These timing constraints are typically deterministic, meaning they refer to 

values and not statistics or averages [35].   

 

Real time systems are divided into two main groups:  Hard and Soft real time systems.  A 

real time system that is „Hard‟ is one that absolutely must meet the deadlines imposed on its 

tasks.  If one of these deadlines is missed, even slightly, the system experiences a critical failure.  

Examples of hard real time systems include pace makers and nuclear reactor control systems.  

Soft real-time systems can withstand missing constraints.  The effectiveness or quality of the 

data may be diminished, but failures are not critical.  Examples of soft real-time systems include 

streaming video systems.  If constraints are not met, the quality of the video may degrade, but the 

entire system is not lost. 

 

Real-Time Operating Systems are a natural fit for digital control systems.  They are 

designed to operate while interfacing with a real-world system, and provide certain guarantees as 

to what specific time intervals inputs will be read and outputs will be provided.  Accurate 

sampling, and timely input updates are vital to the successful operation of a digital control 

system.   

 

 The CSPS provides a compiled version of the Computation Kernel that has an RTX
®
 port 

of the OS abstraction layer.  RTX
®
 provides a set of libraries and a realtime subsystem that is 

installed as a Windows kernel device driver.  The libraries provide access to this realtime 

subsystem through an API defined by RTX
®
 to closely match that of the typical Win32 API.  

The RTX
®
 architecture was designed such that it extends, not encapsulates, Windows to prevent 

interference with the Windows kernel.  RTX
® 

runs its own thread scheduler that preempts all 

Windows processing.  This is how real time operation is realized.  The typical RTX
®

 application 
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consists of two programs:  a program written for Win32, and another written for the RTSS 

Subsystem.  Shared memory and IPC objects establish communication between these two 

processes.  This allows a developer to use all of the tools available for windows development, 

and still have real time performance.  [1] 

 

 

Figure 6:  RTX®  Architecture 
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2.3 Hardware-In-The-Loop Simulation 
 

Hardware-In-The-Loop simulation is a technique that replaces real plants with simulated 

counterparts.  These simulated plants accept inputs and produce outputs just as the real one does.  

From a „black-box‟ perspective, the Hardware-In-The-Loop simulation and the physical plant 

appear exactly the same (figure 5).   
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Figure 7:  CSPS and Physical Plant as Black Box Systems 

 

In his paper “Hardware-In-The-Loop Simulation and Its Application In Control 

Education” Wojciech Grega states that “The concept of „hardware-in-the-loop (HiL) method is to 

use a simulation model of the process and the real target hardware.”[16]  He goes on to describe 

how a simulated model must process signals in real time and provide them to a controller as the 

real physical plant would.  The controller provides control signals to the simulation model just as 

it would the actual plant it was designed to control.  In this way, the simulation appears as a 

„black-box‟ with inputs and outputs matching that of the target plant.  The simulation takes the 

place of an actual physical plant.  Figures 6 and 7 show the difference between the classical 

experimental setup (figure 6) and the hardware-in-the-loop setup (figure 7).  In the classical 
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setup, a PC runs the implementation of the digital controller.  The controller feeds output to a 

data acquisition device that will convert the digital commands to input for the plant.  The plant 

physically responds to these input commands.  Typically sensors monitor the state of the plant 

and provide information in the form of output signals.  These signals are then fed back into the 

data acquisition device which provides them to the controller running on the PC.  The hardware-

in-the-loop method diagrammed by figure 7 shows the idea that the physical hardware that 

makes up a plant may be fully replaced by another computer.  In figure 7 PC2 runs the 

implementation of the digital controller.  The controller produces command signals that are 

converted to the exact same input as before by a data acquisition device.  The difference is that 

the converted signals are given to PC1 through an I/O board, instead of a physical plant.  PC1 

runs a simulation of the plant.  It takes these inputs, runs the simulation based upon them, and 

provides the output through the I/O board just as the plant did in figure 1.  This is returned to PC 

2 running the controller through the data acquisition device to close the loop. 

 

 
Figure 8:  Classical Control Setup [16] 

 

 
Figure 9:  Hardware-in-the-loop method [16] 

 

The Control System Plant Simulator behaves exactly the same way.  The goal of 

the Control System Plant Simulator is to provide a framework that completely takes the 

place of almost any physical plant – with limitations imposed only by the physical 

constraints of the target computer and data acquisition board.  Grega argues that the use 

of physical plants for experimental verification of controllers designed by students is 

extremely important for illustrating theory at work, but continues to explain that complex 

laboratory implementations of industrial plants are too expensive and dangerous for 

education purposes.  He proposes Hardware-In-The-Loop simulations instead.  This is the 
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motivation behind the Control System Plant Simulator.  The CSPS provides a means by 

which academic environments can simulate a plant to be controlled by the students‟ 

controllers.  The simulation may be simple, and used as a verification step before testing 

the controller on a physical plant, or it may be used entirely as a substitute for complex 

equipment like a jet engine.  Grega explains that “The key to hardware-in-the-loop 

simulation method lies in the software.”[16] He outlines specifically the need for such a 

tool as the Control System Plant Simulator. 

 

Other hardware-in-the-loop simulators exist, such as those implemented by the 

dSPACE GmbH company, but these are targeted towards the TMS320 DSP processors 

and are highly specialized systems.  Grega explains that the “drawback of this 

configuration is the price:  the code generation software is very expensive due to its small 

market share.”[16].  For his simulations, he had to generate a real time hardware-in-the-

loop plant of his own as few academic institutions could afford the dSPACE tools.  Grega 

concludes his paper arguing that without actually applying designed controllers to actual 

industrial situations, control engineering may as well be taught as an applied mathematics 

course.  He states that “Often, the control projects are not complemented by practical 

activities due to the high cost of laboratory equipment.”[16].   
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3.  The Control System Plant Simulator 
 

The Control System Plant Simulator is a solution to the problem of how to have a 

large number of students develop and test digital controllers on realistic plants.  It has 

been shown that the benefits of actual in-lab work are many, but the use of real physical 

hardware is oftentimes impractical [16].  The Control System Plant Simulator is a 

Hardware-In-The-Loop suite of programs that provide a simulation framework for any 

plant that can be expressed as a set of State Space equations, as a traditional transfer 

function, or as a set of poles and zeros.  The system is designed with flexibility in mind.  

It is fully expected that users of the Control System Plant Simulator will make simple, but 

powerful enhancements.  As such, a complete description of the system design and 

implementation are required.  This section provides this information.  The overall system 

architecture is described using a top down approach.  This section provides details of the 

implementation including class interaction diagrams and sequence diagrams.  Finally, the 

delivered product is described, along with comments about the difficulties encountered 

and the compromises made to overcome them.   

 

3.1 System Design 
 

This section describes the design of the Control System Plant Simulator using a 

top down approach.   

 

3.1.1    Process Space Overview  
 

 The Control System Plant Simulator is separated into three distinct process spaces 

as shown in figure 8.  This modular design provides for a great deal of the flexibility the 

system provides for users.  Should major adjustments be required to a portion of the 

system, such as the pluggable user interface, only one process space must be altered.  The 

first process space is the User Interface.  This is the process that users interact with.  The 

User Interface design allows the framework user to create user interfaces customized for 

plant simulation.  Individually developed User Interfaces do not even have to be 

developed using the same programming language as the remainder of the system.  The 
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second process space is the Win32 process.  This process deals with configuration and 

non-real-time interactions with the Windows operating system (such as file 

management).  It stores, configures, saves, and loads all configuration information until 

the system is ready to begin simulation.  The third and final process is the Computation 

process.  The Computation process is responsible simulating the configured plant, and for 

reading and writing to the data acquisition device connected to the system.  It is the 

lowest level process, and is given its own process space to allow it to be launched on a 

separate operating system (such as RTX
®
) or as a kernel level process.  These processes 

send commands and data between each other through interfaces implemented through 

shared memory and named semaphores.   

 

User Interface Process

Ui to Win32 

Outgoing 

Interface

Win32 to UI 

Incoming 

Interface

Win32 Process

UI to Win32 

Incoming 

Interface

Win32 to UI 

Outgoing 

Interface

Win32 to Comp 

Outgoing 

Interface

Comp to Win32 

Incoming 

Interface

Computation Process

Win32 to Comp 

Incoming 

Interface

Comp to Win32 

Outgoing 

Interface

Process

Boundary
Process

Boundary

Non-Real- 

Time OS 

Interface

Non-Real- 

Time OS 

Interface

Real-Time 

OS 

Interface

Real-Time 

OS 

Interface

Non-Real-Time OS 

(Windows)
Real-Time OS (RTX®) 

 Data 

Acquisition 

Device

CSPS Framework

 

Figure 10:  System Diagram 
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3.1.1.1 User Interface Process  
 

The User Interface process is the top level process.  It is what the individual users 

interact with directly.  This process does not run in real time, and does not interfere with 

the processing of the Computation Process.  This process allows the user to initialize, 

configure, start, and stop the simulations, and is designed for configurability.  This is a 

component of the CSPS, and will be launched as part of the CSPS start-up procedure, but 

it is expected that individual framework users will design their own User Interface 

processes.  This gives framework users the ability to tailor their interface to the plant they 

wish to simulate by adding plant specific details and animations to their interface.  It is a 

vital part of the CSPS simulation, but exists outside of the CSPS framework as users will 

be making it themselves. 

 

 

3.1.1.1.1 Responsibilities 
 

The User Interface process is responsible for the following requirements.  It is the 

responsibility of the user interface designer to make sure that each of these requirements 

is met in the user interfaces they design. 

 User Interfaces must field all user commands and input. 

 Format user input into structures meaningful to the Win32 process. 

 Send properly formatted input and commands to the Win32 process. 

 Inform the user of any relevant system information provided by the Win32 

process.  This includes but is not limited to error messages, informational 

messages, the current plant configuration, the current port configuration, and 

input or output values. 

 May provide the user the ability to specify files that can be used for loading or 

saving configurations, or for logging data. 

 Send the command to terminate the simulator when the user shuts the User 

Interface down. 
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3.1.1.1.2 Interchangeability 
 

The User Interface process is designed to be interchangeable.  Framework users 

typically will want a user interface tailored to the plant being simulated.  One developer 

may wish to model the level of fluid in a tank and desires a user interface with a 

specialized GUI displaying an animated tank with visually changing water levels.  Some 

developers may wish to allow users of their plant to modify the plant constants and will 

provide entry windows in their user interface for new values.  Others still may wish to 

prevent any alterations and simply provide a „Start‟ and „Stop‟ button or text command.  

To allow for the infinite range of possible interfaces, the user interface is launched as a 

distinct application.  Developers may write these user interface applications any way they 

wish, provided they adhere to the protocol for inter-process communication between the 

User Interface and the Win32 process.  To facilitate this process, a user interface 

dynamically linked library (DLL) is provided as part of the Control System Plant 

Simulator suite of applications.  The User Manual also provides specific instructions that 

describe how to develop user interface programs to work with the framework. 

 

3.1.1.1.3 Inter-process Communication 
 

 The Win32 process must be informed which User Interface process to launch at 

boot time.  User interfaces communicate with the Win32 process through an interface 

implemented with named semaphores and shared memory.  This interface and the 

protocol for its use are described in detail in section 3.2 of the User Manual, The 

UiWinInterface API.  Every user interface must make proper use of these defined 

semaphores and shared memory locations to operate with the system as a whole.  A 

dynamically linked library is provided to help simplify this process.  This library has 

been exported for use with Microsoft Visual Basic applications as well as traditional 

windows applications.   

 

3.1.1.2 The Win32 Process 
 

The Win32 process serves as the main entry point for the entire system.  The 

Win32 process is the first process launched, and is responsible for launching the other 
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two processes.  All commands from the user interface are fielded by the Win32 process, 

which then validates and executes them.  It stores all configuration information before a 

simulation starts, and manages the Computation process. 

 

3.1.1.2.1 Responsibilities 
 

The Win32 process is responsible for: 

 

 Launching the User Interface and Computation processes.   

 Converting plants provided by the user to state space notation for the 

Computation Process. 

 Storing plant and port configurations before a simulation is started. 

 Validating plant and port configurations when the user attempts to start a 

simulation. 

 Configuring the Computation process with validated plant and port 

configurations upon simulation start. 

 All file input and output, including saving and loading configuration data.   

 All logging, which must be done in a way that does not interfere with any other 

process in the system. 

 Manages updates to the user interface, including any messages or port value 

updates. 

 

3.1.1.2.2 Startup 
 

Upon startup, the Win32 process launches and configures the Computation 

process and the User Interface process.  It establishes connections to and from each of the 

processes, and initializes all system shared variables. 

 

3.1.1.2.3 Logging 
  

 The Win32 process manages three different optional logs.  These logs are written 

to files that the user may view upon simulation completion.  Log messages may be 

informational messages describing how the simulation is running, critical messages 
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indicating major errors, and IO messages indicating the current input and output of the 

system.  All log messages are forwarded to the UI process which can do with them what 

it wants, but critical logs are always written to standard output as a minimum.  IO logs 

are written in comma delimited format, allowing them to be imported directly to database 

programs like Microsoft Excel with no difficulty. 

 

3.1.1.3 Computation Process 
 

The Computation process handles all calculations needed to simulate a configured 

plant.  This process handles plant evaluation and input and output to physical hardware.  

It consists of two main parts:  the Plant and the Port Manager.  The plant is responsible 

for running the mathematical model of the plant.  by repeatedly executing simulation 

cycles.  Simulation cycles start by fetching data from the data acquisition device.  This 

data is converted into plant engineering data values, and is used to calculate the next set 

of outputs.  These outputs are converted back to physical data and are provided to the 

data acquisition device to be sent to the controller. 

 The Port Manager handles reading input for the Plant, and writing output from 

the plant to a connected Data Acquisition device.  Both of these elements are configured 

by the Win32 process which obtained the configuration information from the User 

Interface process.  It may also report changes in system state or data through the logging 

system. 

 

3.1.1.3.1 Responsibilities 
 

The Computation process is responsible for: 

 

 Performing the plant simulation.   

 Converting continuous plants to discrete 

 Managing physical Input and Output. 

 Mapping physical Input and Output to the inputs and outputs of the specified 

plant. 

 Updating the Win32 process with status through update and log operations. 
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3.1.1.3.2 Physical Ports 
 

 The Computation process manages the physical I/O through a data acquisition 

device that is known at compile time.  Should a data acquisition device be altered, a small 

section of the Computation process will need to be ported.  Due to the modular design of 

the Computation process, the effort required to make this port is minimal.  See User 

Manual Section 4:  Porting a New Data Acquisition Device for specifics on how to 

develop for different data acquisition devices. 

 Physical ports are read and written to at periodic intervals.  The user may 

configure these intervals individually for each physical port.  This allows for data 

acquisition boards that take long periods of time to update their ports.  When a port is 

read, the raw data from the acquisition board is read and stored to a cache.  When the 

plant needs input data, the data is fetched from this cache.  When the plant has calculated 

a new set of outputs, the output data is written back to the cache.  When it is time for the 

output to be refreshed, these cached output values are written to the data acquisition 

device. 

 

3.1.1.3.3 Pseudo Ports 
 

 While the physical ports available on a workstation may not often change, the 

plant simulated is expected to be changed frequently.  Each plant will have different input 

and output requirements.  Some will use simple integer input, others will need access to 

precise floating point input.  Some will be Single Input Single Output (SISO) systems, 

and others will be Multiple Input Multiple Output (MIMO) systems.  In addition, a plant 

defined for the Control System Plant Simulator should be able to be saved, and loaded on 

another system running the Control System Plant Simulator without altering the plant 

itself.  To satisfy all of these requirements, the Control System Plant Simulator wraps 

Physical Ports in Pseudo Port objects.  Pseudo Ports are named objects, whose names 

match perfectly with the inputs and outputs of a particular defined plant.  Pseudo ports 

must reference real physical ports to „connect‟ them to the inputs and outputs of the 

defined plant.  Pseudo ports are also responsible for reading or writing physical input 
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from the physical data cache, and for converting the input and output of the current data 

acquisition device into engineering data meaningful to the plant as shown in figure 9.   
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Figure 11:  PhysicalPort and PseudoPort Interaction 

 

Pseudo Ports come in two distinct types:  binary and analog.  Binary pseudo ports 

may be any size up to the maximum size of the physical port they wrap.  Several binary 

pseudo ports may map to the same physical port provided the physical port is large 

enough (for example, a 32 bit physical port can be used as two 16 bit binary pseudo 

ports).  Analog ports, on the other hand, have a one to one relationship with their physical 

ports.  Analog pseudo ports convert physical data values to engineering data values 

through a simple linear scaling procedure that converts the largest possible engineering 
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value acceptable to the plant to the highest voltage that may be read from the physical 

port and the smallest possible engineering value to the lowest voltage.  For example, a 

physical analog port may only be able to provide voltages between 0 and 5 volts, but this 

value represents a pressure measured in 50 to 200 PSI.  Analog pseudo ports perform this 

conversion.   

 

3.1.1.4 Interfaces 
 

The three main system processes must communicate between each other to pass 

configuration, update, informational, and control messages.  An incoming and outgoing 

interface is defined for each process.  These interfaces are the means by which the 

processes communicate.   

 

 These interfaces are implemented through the use of shared memory and named 

semaphores.  Figure 10 shows a generic interaction across process boundaries through 

these interfaces.  Incoming interfaces run a separate thread of execution that block on a 

named semaphore (The Interface Semaphore).  Action is initiated by sending commands 

to the connected outgoing interface that cause the semaphore to be unlocked.  All 

outgoing values must be set in shared memory before unlocking this semaphore.  These 

include values that indicate which operation has been called, as well as provide any 

parameters necessary for execution of the requested operation.  The thread is then 

blocked on another named semaphore (The Return Semaphore).   

 When the Interface Semaphore is unlocked, the incoming interface thread 

unblocks and determines what operation was called by checking values in shared 

memory.  Once the specific operation has been determined, the incoming interface thread 

copies any relevant parameters out of shared memory.  All input or output parameters 

must be copied to or from memory.  With all the necessary data, the incoming interface 

thread invokes the proper function on one of the objects in its process space.  Once this 

function call returns, the incoming interface thread copies return data back to shared 

memory and unlocks the Return Semaphore indicating that the requested operation was 

completed.  The thread that blocked when it made a call on the outgoing interface 
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unblocks and copies this data out of shared memory.  The data is then provided to the 

calling process through a more traditional return value.   

 

 
Figure 12:  General Inter-Process Communication 
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For Example, the Computation Kernel has an incoming interface that allows the 

Win32 process to add pseudo ports to the configuration.  The Win32 process calls an 

operation on the Outgoing Interface passing to it the pseudo port information as a 

parameter.  This data is copied to shared memory, along with an identifier indicating that 

the „AddPort‟ operation has been called.  The interface semaphore is unlocked, and the 

caller blocks on the return semaphore.  The Incoming interface thread unblocks and reads 

the identifier out of shared memory.  It determines that the „AddPort‟ operation has been 

requested and copies the parameters out of shared memory.  It then calls the AddPort 

operation on the PortManager object, passing in the copied parameters.  When the call 

returns, the return value is copied into shared memory and the return semaphore is 

unlocked.  The incoming interface thread blocks on the interface semaphore again, while 

the calling thread in the original process space unblocks.  It copies the return value out of 

shared memory and returns it to the caller in the Win32 process. 

3.1.1.4.1 Multithreading Considerations 
 

Incoming Interfaces themselves are thread safe in that only the thread created by 

the incoming interface‟s inheritance of class Thread accesses the private functions that 

access shared memory.  This thread is blocked by the interface semaphore until an 

operation is ready.  It is the responsibility of the outgoing interface connected to this 

incoming interface to make sure that the semaphore is not unblocked when memory is 

vulnerable.   

While the incoming interface executes a requested operation, the initiating 

outgoing interface is blocked on the reply semaphore.  It is the responsibility of the 

incoming interface to unlock the reply semaphore once execution is complete, even in the 

case of a failure.   They access shared memory that must be protected against multiple 

access and modification.   

There is one unit of shared memory that a pair of connected outgoing and 

incoming interfaces access.  This shared memory holds parameters, return values, and 

data indicating which function has been called.  Access to this shared memory MUST be 

limited to one and only one thread of execution.  No operation may be called until the 

previous operation has completed.  This means that it is the responsibility of the 
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Outgoing Interface to hold off any calling process until previous memory accesses have 

completed.  This is done through the use of a protection semaphore.  All Outgoing 

Interfaces are required to lock the protection semaphore upon function entry, and unlock 

it when the return value has been set and shared memory access is no longer needed.   

In addition, all outgoing interfaces must wait for their connected incoming 

interface to complete their operations before unlocking the protection semaphore, even 

when there is no return value for the operation invoked.  This is because the incoming 

interface relies on shared memory to receive input parameters and an indication of which 

function has been called.  If an outgoing interface unlocked the protection semaphore, it 

is possible another operation could be called and would change shared memory to 

indicate a completely different operation.  To prevent this issue, all outgoing interfaces 

are required to block on the reply semaphore until the connected incoming interface 

releases it. 

 

3.1.1.5 Threading Structure 
 

This section describes the threads that run within the CSPS. 

 

3.1.1.5.1 User Interface 
 

The threading structure of the user interface is completely up to the designer of 

the interface, but at least one additional interface thread will always be present.  The User 

Interface has an additional thread of execution that handles incoming operation requests.  

It blocks until a request is made, unblocks to handle it, and blocks again once the request 

has been completed.  

 

3.1.1.5.2 Win32 Process 
 

The Win32 process one main thread of execution that is responsible for creating 

all of the objects within the system.  It configures the objects and launches the process 

spaces during the initial boot.  Once the system has been established, this thread blocks 

until the User Interface reports that the user has requested the system to shut down, at 

which time it handles tearing down all of the objects it created. 
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Beyond the main thread, the Win32 process consists of two incoming interface 

threads, one for handling requests from the User interface, and one for handling requests 

from the Computation Kernel.  These threads block until an operation is requested, 

handle any requested operations, and then wait for more.   

 

3.1.1.5.3 Computation Kernel 
 

Like the Win32 process, the Computation Kernel has a main thread responsible 

for establishing all of the objects upon startup.  It also has an incoming interface thread 

that handles operation requests from the Win32 process. 

In addition to the startup and communication threads, the Computation Kernel has 

a thread dedicated to the Plant, the Plant Watchdog, and the Port Cache.  The Plant thread 

handles the calculations required during simulation.  It is manages the calculation portion 

of a Simulation Cycle.  The Plant Watchdog thread monitors the plant and makes sure 

that all deadlines are met.  The Port Cache thread handles reading from and writing to the 

physical data acquisition device.   

3.1.2     Detailed Design 
 

The CSPS Framework is a complex set of components designed for flexibility, 

alteration, and customization.  To facilitate future development of the framework, this 

section has been written to provide the detailed design for the system as a whole.  This 

includes the overall design for the operating system abstraction, each process space, and 

the classes that compose the processes. 
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3.1.2.1 Operating System Abstraction 
 

Portability of the system is of prime importance to the CSPS Framework.  A full 

port of the entire system is provided for RTX
®
 in this distribution, and others are likely to 

be required in the future.  The CSPS Framework requires the following from a target 

operating system: 

 Support for named semaphores across process spaces.  The target OS must 

provide semaphores that threads may block upon in one process space, and be 

signaled by another.   

 Support for shared memory.  The target OS must provide some shared memory or 

shared variable support that allows two process spaces to set, access, and alter the 

same variable. 

 Support for threads. 

 Sleep or pause commands.  The target OS must provide the ability to stop the 

execution of a thread for a specified period of time. 

 

In order to provide for a highly portable system, several classes were designed to 

provide an abstraction layer between the operating system and the Control System Plant 

Simulator.  These classes may have to be ported should one or more of the system 

processes be moved to another operating system. 

 

3.1.2.1.1 Duality of OS Abstraction Classes 
 

Each of the Operating System Abstraction classes provides two different 

Operating System implementations.  The first is a primary interface that is always 

expected to be implemented.  The second is an optional interface for the Computation 

Kernel, should the Computation Kernel use an interface other than the primary one.  The 

User Interface and Win32 process are expected to run on the same operating system, 

referred to as the „Primary OS‟, but the Computation Kernel may run on a separate 

operating system extension, referred to as the „Secondary OS‟, such as RTX
®
.  By setting 

some precompiler definitions in the LocalDefinitions.h file, a developer may turn 

secondary code on or off.  When porting from one system to another, the Operating 



35 

 

System Abstraction classes will have to change to reflect the new operating system.  If 

only the operating system upon which the Computation Kernel launches is changing, 

only the secondary interface code will have to change. 

 

3.1.2.1.2 Class Thread  
The thread class abstracts operating system threads from the Control System Plant 

Simulator suite of applications.  This class is responsible for creating, running, and 

managing a thread of execution. 

 

Figure 13:  Class Thread 

3.1.2.1.2.1 Responsibilities 
 

 The Thread class is responsible for managing all operating system specific 

operations required to start and run a thread of execution.  It must manage the priority of 

the thread it created, and is responsible for releasing any resources dedicated to the thread 

upon destruction. 

 

3.1.2.1.2.2 Usage 
 

 The Thread class is an abstract parent class.  Other classes in the system that have 

operations that are required to execute within their own threads of execution inherit from 

class Thread and overwrite the virtual Loop() operation.  Class Thread insures that the 

Loop() operation will be called by a  new operating system thread of execution.  Should 

Loop() return, the thread will complete and terminate. 

 

3.1.2.1.3 Class InterfaceSemaphore 
  

The Interface Semaphore class wraps traditional operating system semaphores.  It 

must provide access to the semaphores in such a way that the same semaphore may be 
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accessed from separate process spaces at the same time.  Typically this is handled as a 

named semaphore.  When the semaphore is opened with a name that already exists in 

another process space, the existing semaphore is provided.   

 

 

Figure 14:  Class InterfaceSemaphore 

 

3.1.2.1.3.1 Responsibilities 

  

Interface Semaphore objects are required to be available across process space 

boundaries.  If an Interface Semaphore is opened in one process with the same name as 

an Interface Semaphore in another, instead of creating a new Interface Semaphore, a 

handle to the original semaphore must be returned.  Interface Semaphores are counting 

semaphores as opposed to binary.  They decrement a count every time Lock() is called 

until that count reaches zero.  Calling Lock() on an Interface Semaphore with count 0 

causes the system to block.   

 

3.1.2.1.3.2 Usage 
 

 The Interface Semaphore object is a simple named semaphore.  It is constructed 

with a name and a maximum count.  Currently, the CSPS framework utilizes semaphores 

that have a maximum count of 1, but the InterfaceSemaphore class allows for greater 

maximum counts for future extensions.  Each time Lock is called on any of the interface 

semaphores constructed with the same name, the count is decremented.  When lock is 

called on a semaphore that has reached zero, the calling process is blocked.  Unlock adds 

resources to this count. 
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3.1.2.1.4 Class SharedMemoryInterface 
 

The Control System Plant Simulator requires the use of Shared Memory in order 

to send information between process spaces.  Shared Memory is memory that more than 

one application can access.  The SharedMemoryInterface class manages the creation and 

cleanup of memory shared between process spaces. 

 

 

Figure 15:  Class SharedMemoryInterface 

 

3.1.2.1.4.1 Responsibilities 
 

The SharedMemoryInterface is responsible for creating memory that can be 

accessed between different process spaces.  When a SharedMemoryInterface is 

constructed in one process space with the same name as another SharedMemoryInterface 

in another process space, it is the responsibility of this class to make sure that the 

memory created is the same between the two.  The class is also responsible for making 

sure that the memory is properly released when it is done with it.  There is no process that 

is designated as one responsible for the creation of shared memory.  All 

SharedMemoryInterface objects are constructed the same way.  It is the responsibility of 

this class upon construction to look for other blocks of shared memory that were created 

with the same name.  If shared memory exists, the newly constructed 

SharedMemoryInterface deals with the existing memory.  If it does not, the 

SharedMemoryInterface creates a new block of shared memory. 

 

 

3.1.2.1.4.2 Usage 

  

Users of the SharedMemoryInterface create or open existing shared memory by 

indicating how much memory to allocate, and what name should be associated with that 
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memory.  If shared memory exists with the given name, a pointer to the original memory 

will be returned, otherwise new memory will be allocated and tagged with the provided 

shared memory name. 

 

3.1.2.1.5 Class FileInterface 
  

The FileInterface class handles all file input and output operations.  It is 

simplified from traditional Operating System file IO in that only a few select items can be 

written to or read from files, all values are written  as text files, one complete line at a 

time.  These files are input or output only. 

 

Figure 16:  Class FileInterface 

 

3.1.2.1.5.1 Responsibilities 

  

FileInterface is responsible for opening files for read or write access, and for 

providing a common set of functions that can be called to read or write to these files.  It 

wraps the file input/output API provided by the particular operating system it abstracts. 

 

3.1.2.1.5.2 Usage 

 

 Files may be opened for read or write access only.  Any time a file is opened for 

write access, the file is overwritten.  Data is read or written one line at a time.  When 

writing data, only the primitive types „integer‟ and „float‟ are supported.  This is done to 

intentionally limit the capability of the Control System Plant Simulator to exactly what 

was needed. 
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3.1.2.2 Interface Parent Classes 
 

The interface parent classes are abstract classes that provide the basic 

functionality required by the individual interfaces.  .  Interfaces are the unidirectional  

means of communication between process boundaries.  On one side of the boundary, an 

OutgoingInterface allows a process to make a request on another process.  On the other 

side, an IncomingInterface allows a process to field these requests, process them, and 

return any results.  Each process boundary has a pair of these interfaces:  one for each 

direction of communication. 

User Interface Process

Ui to Win32 

Outgoing 

Interface

Win32 to UI 

Incoming 

Interface

Win32 Process

UI to Win32 

Incoming 

Interface

Win32 to UI 

Outgoing 

Interface

Win32 to Comp 

Outgoing 

Interface

Comp to Win32 

Incoming 

Interface

Computation Process

Win32 to Comp 

Incoming 

Interface

Comp to Win32 

Outgoing 

Interface

Process

Boundary
Process

Boundary

 

Figure 17:  Interfaces between Process Boundaries 

 

 

3.1.2.2.1 IncomingInterface 
  

The IncomingInterface class is the parent class for all incoming interfaces.  

Incoming interfaces run their own thread of execution, which waits for operations to be 
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called by Outgoing Interfaces in other process spaces.  It is an abstract class that must be 

overridden. 

 

Figure 18:  Class IncomingInterface 

 

3.1.2.2.1.1 Responsibilities 
 

 The IncomingInterface class is responsible for managing the incoming side of an 

inter-process interface.  It contains a semaphore for the interface, and another for return 

values, opening the local reference to them upon construction.  It initializes an additional 

thread of execution that is always ready to field incoming operation requests.  When this 

thread is unblocked by an Outgoing Interface, it forwards the request to child classes that 

are responsible for determining which operation was requested and how best to fulfill the 

operation request. 

 

3.1.2.2.1.2 Usage 
  

The IncomingInterface class inherits from class thread.  It intiates a new thread of 

execution that blocks on the Interface Semaphore opened at construction time.  When an 

Outgoing Interface unlocks, the thread is unblocked.  The thread then calls 

SubclassHandleEvent which is a protected operation that must be overwritten by 
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inheriting child classes.  In this operation, the child classes will determine what operation 

was requested by the outgoing interface, and how best to service that request.   

 

 

3.1.2.2.2 OutgoingInterface 
  

The OutgoingInterface class is the parent class for all interfaces that make 

operation calls on other processes.  It is an abstract class that must be overridden and 

provides no implementation on its own. 

  

 

Figure 19:  Class Outgoing Interface 

 

3.1.2.2.2.1 Responsibilities 
 

The OutgoingInterface class is responsible for managing the outgoing side of an 

inter-process interface.  It handles the interface semaphore, and the return semaphore, 

opening the local reference to them upon construction, as well as shared memory between 

this Outgoing interface and a connected incoming interface. 

 

3.1.2.2.2.2 Usage 
 

 The OutgoingInterface simply provides a guaranteed platform that inheriting 

OutgoingInterfaces can rely upon.  Classes that inherit from OutgoingInterface are 

guaranteed to have interface events, semaphores, and shared memory. 
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3.1.2.3 User Interface 
 

The User Interface process is unique in that little „official‟ implementation is 

provided.  Individual developers are expected to use the provided classes or dynamically 

linked library to build their own customized user interfaces.  Two complete user 

interfaces are provided and detailed in The User Manual, but these are included as 

examples to help users understand how to use the provided classes.   

The User Interface process is launched by the Win32 process, and is the front end 

with which users interact.  There are no constraints on what the user interface provides, 

and it may be written in any programming language provided that language has an 

implementation for shared memory and named semaphores.  It allows the user to 

command, control, and configure the Control System Plant Simulator.  User interface 

developers may limit the functionality they provide to their users, but at minimum this 

interface must make a call to configure the plant and ports, and a start execution call. 

Developers of a user interface may use the incoming and outgoing interface 

classes, or the dll that abstracts them.  

 

3.1.2.3.1 WinToUiIncomingInterface 
 

The WinToUiIncomingInterface handles all incoming function calls from the 

Win32 process.  These incoming calls are informational in nature, and as such, their use 

is not required for operation.   
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Figure 20:  Class WinToUiIncomingInterface 

3.1.2.3.1.1 Responsiblities 
 

The WinToUiIncomingInterface is responsible for handling the incoming 

message and I/O update function calls from the Win32 process.  It is also responsible for 

buffering incoming messages and updates.  The User Interface itself may check these 

buffers as necessary. 

 

3.1.2.3.1.2 Buffered Messages 
 

Unlike other incoming interfaces, the WinToUiIncomingInterface cannot simply 

forward the requested function call to a specific object.  No requirement is placed upon 

individually developed user interfaces to provide operations to handle these function 

calls.  Callback operations are insufficient as well because some programming languages, 

such as Visual Basic 6, do not allow exterior threads to access their data members.  The 

WinToUiIncomingInterface operates on its own Windows launched thread that cannot 

access Visual Basic callback operations.   

As a result, an additional responsibility has been placed on the 

WinToUiIncomingInterface to buffer all incoming information.  Informational messages 

and critical messages are stored in individual circular buffers.  User Interfaces are 
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required to check to see that data exists in the buffer by calling the HasInfoMsg and 

HasCritMsg before popping messages out of the buffer.  The oldest messages are always 

returned first.  If more data is fed into the buffer before the User Interface removes it, the 

oldest messages are discarded completely.  Input / Output data is not written to a buffer.  

Instead only the most recent Input / Output data is stored. 
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3.1.2.3.2 UiToWinOutgoingInterface  
 

The UiToWinOutgoingInterface provides a set of operations that the user 

interface may call when it wants to invoke a function on the Control System Plant 

Simulator.   

 

 

Figure 21:  Class UiToWinOutgoingInterface 
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3.1.2.3.2.1 Responsiblities 
 

The UiToWinOutgoingInterface is responsible for providing a complete set of 

functions for the user interface.  Each of the provided operations block the calling thread 

from the user interface until the operation returns from the Win32 process.  The 

UiToWInOutgoingInterface must also protect against multiple concurrent accesses to any 

of these functions.  Only one may be called at a time.   

 

3.1.2.3.3 UiWinInterface Dynamically Linked Library 
 

The UiWinInterface Dynamically Linked Library instantiates a 

UiToWinOutgoingInterface a WinToUiIncomingInterface, and provides a simplified set 

of operations to access the functions provided by those interfaces.  It is designed to be 

fully compatible with visual basic for quick and simple graphical user interface design.  

For detailed information about the UiWinInterface API and every function provided, see 

section 3.2 of the User‟s Manual:  The UiWinInterfac API. 
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3.1.2.4 Win32 Process 
 

 The Win32 process is the main program in the Control System Plant Simulator.  It 

is the first process launched by the user, and is responsible for launching each of the other 

processes in turn.  Note that while the name implies complete reliance on Win32, it is 

possible to port the Win32 process to other operating systems by porting the OS 

Abstraction layer to the target OS.  The Win32 process fields commands and 

configuration information from the user interface, and is responsible for saving and 

loading plant configurations and pseudo port mappings.  Plant configurations and pseudo 

port mapping information are stored in data managers until the system is prompted to 

begin execution.  At that time, the Win32 process verifies that the configurations are 

compatible, sends the configuration down to the Computation Kernel, and commands it 

to begin execution.  The Win32 process consists of a number of managers, each of which 

is responsible for a different aspect of the system.   

 

 

WinToUiOutgoingInterface 

FileManager 

CompToWinIncomingInterface 

WinToCompOutgoingInterface 

LogManager 

PortConfigurationManager 

SystemManagement 

PlantConfigurationManager 

UIToWinIncomingInterface 

Figure 22:  Win32 Process Diagram 
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 The Win32 process has two interfaces:  the interface to and from the User 

Interface, and the interface to and from the Computation process.  The remainder of the 

process consists of four managers:  The PortConfigurationManager, the 

PlantConfigurationManager, the LogManager, and the FileManager.  The 

SystemManagement class ties all of the managers together. 

 

3.1.2.4.1 UiToWinIncomingInterface Class 
 

The UiToWinIncomingInterface class fields commands from the User Interface 

process.  It determines what operations have been requested, copies relevant data out of 

shared memory, and makes the appropriate calls on the Win32 manager classes. 

 

 

Figure 23:  Class UiToWinIncomingInterface 

 

3.1.2.4.1.1 Responsibilities 
 

 As a class that inherits from IncomingInterface, The UiToWinIncomingInterface 

is responsible for overriding the HandleEvent operation by parsing out which operation 

has been requested, and performing the appropriate actions to handle the operation.  Once 

the appropriate manager has processed the operation request, the 

UiToWinIncomingInterface is responsible for making sure any return values are copied 

back into shared memory before releasing the semaphore that the outgoing interface that 

started this operation is waiting on.   
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3.1.2.4.1.2 Framework Start-Up 
  

Upon framework start-up, the Win32 process spawns the user interface, but has 

no way to know when the user interface has actually started, established its shared 

interface, and is ready to receive function calls from the WinToUiOutgoingInterface.  To 

handle this problem, in addition to all of the operations that a user may initiate through 

the interface, the UiToWinIncomingInterface must also be prepared to receive a function 

request from the user interface that simply indicates that the UI is active and ready to 

receive function calls. 

 

3.1.2.4.2 CompToWinIncomingInterface Class 
 

 The CompToWinIncomingInterface class handles commands from the 

Computation process and makes the appropriate calls on the SystemManagement class to 

execute the requested operations. 

 

Figure 24:  Class CompToWinIncomingInterface 

 

3.1.2.4.2.1 Responsibilities 
  

As a child class of IncomingInterface, the CompToWinIncomingInterface class is 

responsible for implementing the HandleEvent operation by determining which operation 
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has been requested, copying relevant data out of shared memory, and invoking the 

appropriate function call on the SystemManagement class.  Once that call has returned, 

any return values are placed in Shared Memory.  Once the call has returned, the 

CompToWinIncomingInterface is responsible for making sure any return values are 

copied back into shared memory before unlocking the semaphore associated with the 

incoming request. 

 

3.1.2.4.3 WinToUiOutgoingInterface Class 
 

The WinToUiOutgoingInterface class sends system updates up to the User 

Interface‟s incoming interface.  The User Interface may choose to listen to or ignore these 

operation requests as their completion is not critical to system execution. 

 

 

Figure 25:  Class WinToUiOutgoingInterface 

 

3.1.2.4.3.1 Responsibilities 
  

The WinToUiOutgoingInterface is responsible for updating the user interface 

with the current status of the simulation.  Informational and critical messages are passed 

to the user interface, which may decide what to do with them.  During simulation, the 

status of the ports as seen by the plant is provided through the UpdateIO operation to 

allow the user interface to display the current state. 
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3.1.2.4.3.2 Framework Start-up 
 

Upon framework start-up, the WinToUiOutgoingInterface cannot know if a user 

interface has been launched and is ready to receive incoming commands.  For that reason, 

no outgoing operations may be enacted until the user interface reports that it is ready to 

receive function calls.  The WinToUiOutgoingInterface is responsible for ignoring all 

function requests until SetUiConnected is called, indicating that a user interface is 

available.  It is at this point that function calls can be made on the User Interface. 

 

3.1.2.4.4 WinToCompOutgoingInterface Class 
 

The WinToCompOutgoingInterface class provides an interface for the Win32 

process to the Computation process. 

 

Figure 26:  Class WinToCompOutgoingInterface 
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3.1.2.4.4.1 Responsibilities 
  

The WinToCompOutgoingInterface is responsible for converting the input 

operations into function calls to be invoked on the Computation Process.  It copies the 

input parameters to shared memory and blocks.  It will remain blocked until the 

computation kernel incoming interface completes the operation and unblocks the 

interface semaphore.  At that point, the WinToCompOutgoingInterface is responsible for 

copying the return value out of shared memory and returning it to the calling process.  

The operations provided by this interface allow the Win32 process to start and stop 

execution, configure the Computation Kernel with plant or port information, and shut 

down the program completely.  

 

3.1.2.4.5 PortConfigurationManager Class 
  

The PortConfigurationManager maintains the port configuration in the Win32 

process.  The port mapping stored by the port configuration manager does not need to be 

complete or valid until the start of simulation; at this stage, the user may alter and update 

the values.  The UiToWinIncomingInterface interfaces directly with the 

PortConfigurationManager to set and review the current PseudoPort configuration.  The 

SystemManager interfaces with the PortConfigurationManager to access the port 

mapping for save and load operations.  The port mapping is fetched from the 

PortConfigurationManager by the SystemManager to configure the Computation Kernel 

when prompted to start simulation execution.   

 

Figure 27:  Class PortConfigurationManager 
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3.1.2.4.5.1 Responsibilities 
  

The PortConfigurationManager is responsible for maintaining the Pseudo Port 

mapping.  It provides a repository for all pseudo ports currently configured.  Ports are 

added, removed, and retrieved by name. 

 

3.1.2.4.6 PlantConfigurationManager Class 
  

The PlantConfigurationManager maintains the plant configuration in the Win32 

process. The UiToWinIncomingInterface interfaces directly with the 

PlantConfigurationManager to set and review the plant configuration.  The 

SystemManager interfaces with the PlantConfigurationManager to access the plant for 

save and load operations.  The plant is fetched from the PlantConfigurationManager by 

the SystemManagement class when it is needed to configure the Computation Kernel. 

 

Figure 28:  PlantConfigurationManager 

 

3.1.2.4.6.1 Responsibilities 
  

The PlantConfigurationManager is responsible for maintaining the plant in the 

Win32 process.  Plants may be specified as a set of state space matrices, as transfer 

functions, a matrix of transfer functions, or as a set of nonlinear equations.  The transfer 
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functions themselves may be specified in terms of the coefficients of the numerator and 

denominator, or as a set of zeros, poles, and the gain associated with them.  The system 

only stores plants as systems of state space equations, and the Computation Kernel can 

only accept state space equations as well.  For this reason, the 

PlantConfigurationManager has the additional responsibility of converting transfer 

functions to state space equations for storage.  The PlantConfigurationManager must 

prevent invalid plants from being configured.  This includes making sure that all matrices 

are formatted properly, that complex poles and zeros are delivered in conjugate pairs, and 

that input and output names are not misplaced in the plant specifications.  It also must 

maintain any initial conditions associated with the plant 

 

3.1.2.4.7 LogManager Class 
  

The LogManager handles all logging operations.  This operation is governed by 

the SystemManagement class that passes log information to the user interface before 

sending it down to the LogManager.   

 

Figure 29:  Class LogManager 
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3.1.2.4.7.1 Responsibilities 
  

The LogManager is responsible for handling all logging requests.  This involves 

managing each of the individual FileInterfaces involved for logging, and formatting the 

data received for logs.  IO logs, for example, are written as comma delimited files, and 

require formatting to be performed on every entry.   

 

3.1.2.4.8 FileManager Class 
  

The FileManager class handles all file I/O with the exception of the logs.  For the 

purposes of organization, the FileManager is split into two different file managers; one 

for the plant file I/O, and one for the port file I/O.  

 

 

Figure 30:  Class FileManager 
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3.1.2.4.8.1 Responsibilities 
  

The FileManager is responsible for saving and loading the plant and the pseudo 

port mapping.  This is done by forwarding the incoming call to one of two different sub-

file managers.  Each of the sub-file managers are responsible for saving and loading to 

files in predefined user readable format.  See sections 2.2.5 and 2.3.4 of the User Manual 

for specifics on the format of Plant and Pseudo Port configuration files.  This allows users 

to enter their own plants and port mappings through any basic text editor.   

 

3.1.2.4.9 SystemManagement Class 
  

The SystemManagement class handles all interactions between the various 

managers that make up the Win32 process.  The UiToWinIncomingInterface and 

CompToWinIncomingInterface communicate directly with the SystemManagement to 

handle all external requests that involve manager interaction. 
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3.1.2.4.9.1 Responsibilities 
  

The SystemManagement class is the main class of the Win32 process.  The 

majority of all incoming operations are initially sent through the SystemManagement 

class which utilizes the services provided by the individual managers to fulfill each 

request.  It is responsible for verifying the current configuration, sending that 

configuration down to the Computation process, and for starting and stopping the actual 

simulation.  During load operations it retrieves information from the File Manager to set 

the data in the PlantConfigurationManager and PortConfigurationManager.  It also 

collects data from PlantConfigurationManager and PortConfigurationManager to send to 

the FileManager for saving information.   

WinToUiOutgoingInterface WinToCompOutgoingInterface 

SystemManagement 

StartExecution() : bool 
StopExecution() : bool 
IsReadyForExecution() : bool 
UpdateIO(inputs : PortNameAndData[], numInputs : int, outputs : PortNameAndData[], numOutputs : int) : bool 
LoadPortsFromFile(fileName : const char*) : bool 
SavePortsToFile(fileName : const char*) : bool 
LoadPlantFromFile(fileName : const char*) : bool 
SavePlantToFile(fileName : const char*) : bool 
ShutDown() 
EnableIOLogging(fileName : const char*) : bool 
PostInfoMessage(message : const char*) 
StopIOLogging() : bool 
EnableCriticalLogging(fileName : const char*) : bool 
PostCriticalMessage(message : const char*) 
StopCriticalLogging() : bool 
EnableInfoLogging(fileName : const char*) : bool 
StopInfoLogging() : bool 
RequestIOUpdate() : bool 
SetDiscretizationMethod(method : DiscretizingMethod) : bool 
SetIOUpdateMethod(updateMethod : IOUpdateMethod) : bool 
GetPhysicalInfo() : PhysicalPortsDescriptor 
SchedulePortActivity(portName : const char*, period : int) : bool 
ValidatePlantAndPorts() : ValidationResults 

PlantConfigurationManager FileManager LogManager 

Figure 31:  Class SystemManagement 
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3.1.2.5 Computation Kernel Process 
 

The Computation Kernel process is launched by the Win32 process, and is 

responsible for handling the actual simulation of the configured plant.  It is responsible 

for managing the physical IO, and as such, some small porting effort may be required for 

different data acquisition boards.  It accepts a plant configuration from the Win32 process 

as a set of state space equations, discretizes the plant if necessary, and executes 

simulation cycles.  Discretization is performed in this process instead of in the Win32 

process to move the discretization of plants one level further away from the end user.  

When a user provides a continuous plant, they should not see their plant modified in 

significant ways, especially when saving it to, or loading it from a file.  It may become 

difficult for a user understand that the plant they loaded really is the discrete equivalent 

of what they intended to load.  In addition, it is a requirement of the simulation itself that 

the plant be discretized.  The plant will be kept in its initial state as much as possible until 

the component that needs it to be changed encounters it. 
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Figure 32:  ComputationKernel Process 

 

Access to physical data is provided by physical ports that are launched statically 

by the PhysicalPortCache.  The PhysicalPortCache caches data that is to be written to, or 

has been read from physical ports. PseudoPorts map the physical ports to Plant inputs and 

outputs, and convert physical data to EngineeringValues that are meaningful to the plant.  

Configurations and commands from the Win32 process are fielded by the 

WinToCompIncomingInterface and are forwarded to one of the two major components of 

the Computation Kernel; The Plant, or the Port Manager.  The Plant handles configuring 

and discretizing the plant provided.  When it comes time to run the simulation, the Plant 

is responsible for taking inputs and using them to evaluate the plant at periodic intervals 

on its own thread of execution.  At this stage, all values are stored as engineering values, 

or in engineering value matrices.  The PlantWatchdog monitors the plant to make sure 

that updates are performed within a specified period of time.  Should the updates miss 

their deadlines, the PlantWatchdog will send a critical message to the Win32 process.  
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The Port Manager handles the physical ports and maintains the configured pseudo port 

mapping.   

 

3.1.2.5.1 WinToCompIncomingInterface Class 
 

The WinToCompIncomingInterface provides the means by which the Win32 

process configures and commands the plant, and sends port related configuration 

information down to the port manager. 

 

 

Figure 33:  Class WinToCompInterface 

 

3.1.2.5.1.1 Responsibilities 
 

The WinToCompIncomingInterface is responsible for determining which 

operation has been requested by the Win32 process, and executing that operation on 

either the plant or the port manager.  It is also responsible for unlocking the return 

semaphore that the Win32 process waits on to indicate that the operation is complete. 

 

3.1.2.5.2 CompToWinOutogingInterface Class 
 

The CompToWinOutgoingInterface provides the means by which the 

Computation Kernel reports status back to the Win32 process.  These messages are not 
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vital to operation in that they do not affect the simulation themselves.  They do, however 

report information that may be vital to the user, and are important to keep the user 

informed of the status of the simulation.   

 

Figure 34:  Class CompToWinOutgoingInterface 

 

3.1.2.5.2.1 Responsibilities 
 

The CompToWinOutgoingInterface is responsible for providing a means by 

which the Computation Kernel can report data updates and informational or critical 

messages back to the Win32 process.  It must block the Computation Kernel until the 

Win32 process is done with the data.  For that reason, only critical failures should be 

reported during simulation execution.   

 

3.1.2.5.3 EngineeringValue Class 
 

The EngineeringValue class represents values that are meaningful to the plant.  

All plant calculations are performed on EngineeringValue objects.  This allows future 

implementations to change how the plant performs its calculations.  Fast floating point 

arithmetic through the use of integers is a candidate for such improvements. 
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Figure 35:  Class EngineeringValue 

Note:  Not shown:  Full suite of operator functions. 

 

3.1.2.5.3.1 Responsibilities 
 

EngineeringValue is responsible for providing a wrapper for a floating point 

value, as all plant operations require floating point arithmetic.  The EngineeringValue 

class provides an abstraction that allows arithmetic to be redefined in order to increase 

efficiency.   

 

3.1.2.5.4 EngineeringValueMatrix Class 
 

The majority of all computations required to evaluate a plant are performed as 

matrix operations.  The EngineeringValueMatrix class is a matrix of engineering values, 

and provides functions to perform the required matrix operations on its data members. 
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Figure 36:  Class EngineeringValueMatrix 

Note:  Not shown:  Full suite of operator functions. 

 

3.1.2.5.4.1 Responsibilities 
 

The EngineeringValueMatrix class provides a set of basic matrix operations, 

including matrix inversion, calculating the determinant of the matrix, and basic arithmetic 

operations.  This simplifies the requirements imposed on the plant, and provides for a 

much cleaner implementation.   

3.1.2.5.5 PhysicalPort Class 
 

The PhysicalPort class represents an interface available on the connected Data 

Acquisition device.  Raw physical data is read from or written to physical ports.   

 

Figure 37:  Class PhysicalPort 
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3.1.2.5.5.1 Responsibilities 
 

The PhysicalPort class is an abstract class from which specific physical ports must 

inherit.  Inheriting classes are required to provide an implementation for the Read and 

Write value operations that handle physical IO for a specific interface on the attached 

data acquisition device.  New inheriting classes will have to be written for different data 

acquisition devices.  See Section 4 of the User Manual for information about how to 

update the Control System Plant Simulator for new data acquisition devices.   

 

3.1.2.5.6  PhysicalPortCache Class 
 

The PhysicalPortCache owns all of the PhysicalPorts in the system, constructing 

them at launch.  It manages a cache of data that has either been read from a physical port, 

or will be written to a physical port shortly.  The values provided to the plant come from 

this cache, and not the ports themselves. 
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Figure 38:  Class PhysicalPortCache 

 

3.1.2.5.6.1 Responsibilities 
 

The PhysicalPortCache is responsible for maintaining a cache of all physical 

values, and for updating the PhysicalPorts independently from the execution of the plant.  

When the simulation is running and the plant is being evaluated, reading from or writing 

to physical ports must not block the thread of execution that is evaluating the plant.  

Instead, the PhysicalPortCache has its own thread of execution.  This thread will read 

data from the plants and store it in a cache.  Accessing data from this cache is both fast 

and deterministic.  When the plant has computed data to be output to the physical ports 

that data is stored in the cache instead.  These cached values will be written to the 

physical ports at periodic schedulable intervals. 
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3.1.2.5.6.2 Update Schedule 
 

Not all physical IO is performed at the same rate.  Some physical interfaces may 

update much faster than others.  Some may tie up considerable system resources, 

preventing or limiting access to other physical ports.  For this reason, the Control System 

Plant Simulator allows the user to determine exactly how much time will pass between 

updates for each individual port.  For example, an analog port that is known to take some 

time may be updated every 100 milliseconds, while a simple digital port may be updated 

every 20.  Note that no update schedule should be faster than the plant cycle interval.  

These update schedules are treated the same for input or output ports.  When it comes 

time to update a particular port, either a read or a write will be performed on the physical 

port depending on the port‟s configured direction. 

 

3.1.2.5.6.3 Inheriting Implementations 
 

The PhysicalPortCache is an abstract class that must be implemented by 

inheriting subclasses.  This is because it manages all of the physical ports in the system, 

and is responsible for populating itself with these physical ports at framework start-up.  

Physical ports themselves are data acquisition device specific, as is the 

PhysicalPortCache.  A new physical port cache must be written for each data acquisition 

device, but the only operation that needs to be implemented is the PopulatePortCache 

operation.  All major functionality is handled by the parent. 

 

3.1.2.5.7 PseudoPort Class 
 

The PseudoPort class provides the connection between the user defined plant and 

the physical data acquisition unit.  Inputs and outputs of the plant must be mapped to data 

that enters the system through the data acquisition unit.  PseudoPorts indicate which plant 

inputs are provided data from which physical inputs, and which plant outputs provide 

data to which physical outputs.  They also determine how that data must be formatted 

into meaningful engineering value data. 
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Figure 39:  Class PseudoPort 

3.1.2.5.7.1 Responsibilities 

The PseudoPort is responsible for converting raw physical data read from a data 

acquisition device into Engineering values that can be used by the plant, and for changing 

engineering values provided by the plant back into raw physical data to be sent to the data 

acquisition device output ports.  This conversion is done intelligently, in that it is only 

performed when a value has been changed.  Neither incoming physical data values nor 

outgoing engineering value data are converted when the value has not changed.  When 

the plant needs data, it requests an evaluation from all input pseudo ports.  Each 

PseudoPort will then retrieve data from the physical port cache.  They will convert the 

data if the value has changed from the previously converted one, or use a saved 

conversion of the previous value if it has not.  These converted values are then provided 

to the plant as a set of inputs.  When the plant has calculated a set of outputs, these are 

sent to the output PseudoPorts as EngineeringValues.  If the EngineeringValues are 

different from previously provided EngineeringValues the PseudoPorts will convert them 

to physical data values and update the PhysicalPortCache.  If not, they will provide the 

result of the previous conversion without performing the conversion calculation.     
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3.1.2.5.7.2 Plant and Physical Port Connection 
 

Every input and output in the plant is named.  A corresponding pseudo port must 

be provided for each and every one of these inputs and outputs.  The pseudo port then has 

knowledge of which physical port it must retrieve data from, and send data to.  When 

providing a set of pseudo ports for the system, users must take care to map every input 

and output to a valid physical input or output port. 

 

3.1.2.5.7.3 Engineering Value Cache 
 

PseudoPort operations are an unavoidable part of the evaluation of a plant.  Data 

must be fetched and converted to values the plant can understand.  To help improve 

compute time, each PseudoPort provides an engineering value cache.  The plant could 

request data at a pace much faster than the PhysicalPorts can provide it.  In these 

instances, the actual data retrieved from the PhysicalPortCache will have not changed.  

Each PseudoPort maintains a copy of the previous Engineering Value it provided for 

either an update or an evaluation, and the physical data it received that established the 

engineering value.  Should the new physical data match the previous physical data 

exactly, the pseudo port will bypass the mapping calculation and simply provide the 

previous engineering value.  

 

3.1.2.5.8 AnalogPseudoPort Class 
 

Analog PseudoPorts are PseudoPorts that map to physical ports that provide 

analog data.  Physical data is provided to the Analog Pseudo Port as a digital value that 

represents an analog measurement made by the data acquisition device.  This class 

converts that measurement to a value meaningful to the plant. 
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Figure 40:  Class AnalogPseudoPort 

3.1.2.5.8.1 Responsibilities 
 

The AnalogPseudoPort directly wraps one analog physical interface.  Its main 

function is to modify the data read from physical IO by scaling it to a range that is 

meaningful to the plant.  This is accomplished through simple linear scaling, though more 

complex scaling systems could be added in the future.  A physical data acquisition device 

may be able to only provide inputs in the range of -10 to 10 volts, but these values could 

correspond to any number of possible values and ranges.  For example, consider a pitch 

controller for an airplane that has the angle of the pitch as an input in degrees from 

horizontal, from -0.6 to 0.6 radians.  An AnalogPseudoPort can be configured to scale the 

measured value provided by the data acquisition device to this range of values.   

 

3.1.2.5.8.2 Engineering Value Conversion 
 

AnalogPseudoPort converts physical data values to analog data values by scaling 

the values linearly according to a traditional  equation where m and b are 

defined as: 
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Note that while this is the method currently used by the CSPS framework, it is not the 

only method that can be used to scale this data.  Future developers may alter this method 

or add new ones as they see fit.  

 

3.1.2.5.9 BinaryPseudoPort Class 
 

The BinaryPseudoPort class connects physical digital ports to the inputs and 

outputs of the plant.  BinaryPseudoPorts may divide larger physical ports by mapping to 

a subset of the physical port‟s bits. 

 

 

Figure 41:  Class BinaryPseudoPort 

3.1.2.5.9.1 Responsibilities 
  

The BinaryPseudoPort directly wraps the bits of a physical digital interface.  It 

does not scale values like the AnalogPseudoPort does, but it can be used to divide a 

physical digital port into numerous smaller ports to be provided as separate inputs and 
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outputs to the plant.  For example, one 32 bit physical port may have two different named 

16 bit BinaryPseuoPorts mapped to it.  In this way, a single physical input can be used as 

two completely different plant inputs, which can be helpful when physical interface 

resources are scarce.  

 

3.1.2.5.10   Port Manager Class 
 

The PortManager contains the PhysicalPortCache and any number of Pseudo 

Ports that access the cache for updates.  It converts user specifications for pseudo ports 

into actual port objects that can carry out the functions needed to read and convert data 

for the plant. 

 

 

Figure 42:  Class PortManager 

3.1.2.5.10.1 Responsiblities 
 

The PortManager class is responsible for maintaining the physical port cache and 

all of the PseudoPorts in the system.  Any time a port is to be accessed, added to the 

system, or updated, the port manager fields the request and sends it to the intended port.  
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It is responsible for instantiating the physical port, and as such contains code that may 

need to be altered should the data acquisition device be changed.  It is also responsible 

for retrieving data from the ports when requested.  The plant will request all input values 

at once, or will provide values to be sent to a set of output ports.  The PortManager 

retrieves the data from the ports and provides it to the plant as sets of name-value pairs.  

It must also determine which ports are being updated from a set of name-value pairs and 

update the pseudo ports accordingly. 

 

3.1.2.5.11 Plant Class 
 

The Plant class represents the plant evaluator.  It handles the simulation of the 

configured plant by fetching data from the port manager and applying it against the plant 

configured by the user. 
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Figure 43:  Class Plant 

3.1.2.5.11.1 Responsibilities 

 

The Plant Class is responsible for simulating the configured plant.  It accepts a 

configured plant as a set of state space matrices, discretizes it using a configurable 

method, and simulates it against data it retrieves from the PortManager.  It periodically 

calculates a new set of states and outputs, the latter of which are provided back to the 

PortManager for physical output.  It also sends update messages back to the Win32 

process containing the EngineeringValue information for the simulation cycle.  This 
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output update may be configured to be pushed every simulation cycle, after a certain 

number of simulation cycles, or only when requested.  As all plants are evaluated at 

discrete intervals, continuous plants must be discretized by the Plant class.  For this 

reason, the user must always provide a sampling frequency when defining plants.   

 

3.1.2.5.12    PlantWatchdog Class 
 

The PlantWatchdog class is initiated by the plant when simulation is begun.  It 

monitors the plant to make sure that the plant performs simulation cycles frequently 

enough.   

 

 

Figure 44:  Class PlantWatchdog 

 

3.1.2.5.12.1 Responsibilities 
 

The PlantWatchdog is responsible for making sure that the plant operates fast 

enough so as not to miss deadlines.    After a configurable period of time, the 

PlantWatchDog checks to see if the Plant has calculated a new set of outputs.  If a new 

set of outputs has not been calculated since the last time the watchdog checked, the 
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PlantWatchdog sends a critical error message back to the Win32 Process.  This is 

accomplished in a separate thread of execution so as not to affect the simulation itself. 
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3.1.3    System Interactions 
 

Individual users may command the Control System Plant Simulator to perform 

numerous actions, each of which involve interactions between numerous objects and 

processes.  The following section describes, in detail, some of the more important 

interactions performed to execute these commands.   

3.1.3.1 System Launch 
 

The Control System Plant Simulator is launched by initiating the Win32 process, 

which is responsible for launching the other processes.  It must also wait until the other 

processes have registered themselves before allowing user controlled operations. 

 

 

Figure 45:  System Launch Sequence Diagram 

Any commands that are to be sent to either to Computation Kernel or the User 

Interface will be dropped until those processes have reported that they are available. 
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3.1.3.2 Saving and Loading Operations 
 

The Control System Plant Simulator allows users to save the configurations they 

have defined.  Both plant and port configurations may be written to files that can be 

loaded in the future.    

3.1.3.2.1 Saving and Loading Ports 
 

The UiToWinOutgoingInterface provides operations that allow user interfaces to 

command the Win32 process to save or load pseudo port mapping to or from a file.   

 

Figure 46:  Load Port Mapping Sequence Diagram 

 To load a port mapping from a file, the file name is passed to 

SystemManagement.  SystemManagement commands the FileManager to read the 

indicated file and sends the loaded pseudo PortMapping to the 

PortConfigurationManager.   
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Figure 47:  Save Port Mapping Sequence Diagram 

To save a port mapping to a file, the file name is passed to SystemManagement.  

SystemManagement requests the pseudo port mapping from the 

PortConfigurationManager, and commands the file manager to save the retrieved 

mapping to the indicated file.  

 

3.1.3.2.2 Saving and Loading Plants 
 

The UiToWinOutgoingInterface provides operations that allow user interfaces to 

command the Win32 process to save or load plants to or from a file.  Plants may only be 

saved and loaded as state space systems.  A plant initially defined by the user by any 

other means, such as a transfer function defined by a set of zeros and poles, will be 

converted by the PlantConfigurationManager as soon as it is set.   

UiToWinOutgoing 

Interface

UiToWinIncoming 

Interface

System 

Management
PortConfiguration 

Manager

FileManager

SavePorts(file name)

return success

SavePortsToFile(file name)

return success

GetPortMapping()

return pseudoPortMapping

SavePseudoPortMapping(file name)

success



79 

 

 

Figure 48:  Load Plant Sequence Diagram 

To load a plant from a file, the file name is passed to SystemManagement.  

SystemManagement commands the file manager to read the indicated file and sends the 

loaded state space plant to the PlantConfigurationManager.   

 

Figure 49:  Save Plant Sequence Diagram 
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To save a plant configuration to a file, the file name is passed to 

SystemManagement.  SystemManagement requests the plant, as a set of state space 

matrices, from the PlantConfigurationManager, and commands the file manager to save 

the retrieved configuration to the indicated file.  

 

3.1.3.3 Physical Data Retrieval and Caching 
 

Data is acquired from the physical data acquisition device at periodic intervals 

and stored for use by the other elements of the system.  When data is ready for output, it 

is written back to this same cache, where it will be used to periodically update the 

physical IO as well. 
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 As the Computation Kernel is launched, the PhysicalPortCache populates itself 

with PhysicalPort objects representing all of the physical interfaces offered by the data 

acquisition device connected to the system.  Once the PhysicalPortCache has been 

populated with ports, it starts a separate thread of execution that will be responsible for 

reading from and writing to the physical ports.  This thread determines which port is the 

next to be updated and how long it must wait before the update is to occur.  This is a 

relative time measurement that does not account for computation time or the delay in 

activation out of sleep.  The period of time between updates may be configured by the 

user for each port individually.   

 When the waiting period is up, the thread determines whether to read from, or 

write to the physical port.  The first port update in figure 48 is an input port.  The 

PhysicalPortCache commands the PhysicalPort to read from its interface and stores the 

returned value into a cache.  Once the read is complete, the PhysicalPortCache 

determines how long to wait before the next update and sleeps again.  When a PseudoPort 

needs to access physical data, it requests data from the PhysicalPortCache which provides 

the value from its internal cache.  When a PseudoPort needs to write data to physical 

output, it sends the data to the PhysicalPortCache, which stores it in its internal cache for 

future use.  Eventually an output PhysicalPort will be scheduled for update.  When the 

PhysicalPortCache recognizes that it must update a PhysicalPort designated for output, it 

retrieves data from its cache and sends it to the PhysicalPort.  The PhysicalPort then 

writes the data to its physical interface.  

 

3.1.3.4 Simulation Start 
 

When the user requests the start of simulation, the Win32 process must verify that 

the configurations are valid, and send the necessary configuration information to the 

Computation Kernel.   
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Figure 51:  Simulation Start - Win32 Process Side 

 

 

The process starts when the request from the User Interface reaches the Win32 

process through the UiToWinIncomingInterface.  The start execution call is forwarded to 

SystemManagement.  Initially, the SystemManagement makes sure that the plant and port 

configuration is valid.  This check makes sure that no input or output names are reused 

for either the plant or the ports, and that every input or output of the plant has a 

corresponding pseudo port.   

Once the configuration has been validated, the SystemManagement sends 

commands to the Win32 process through the WinToCompOutgoingInterface to clear any 

current plant and port configurations.  Once those are clear, the plant is fetched from the 
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PlantConfigurationManager and sent to the Computation Kernel.  If the Computation 

Kernel accepts the plant, SystemManagement fetches the port mapping from the 

PortConfigurationManager.  It walks through the port mapping and configures the 

Computation Kernel one port at a time.  If every port is sent successfully, 

SystemManagement commands the Computation Kernel to begin simulation. 

 

Figure 52:  Simulation Start - Computation Kernel Side 
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 The Computation Kernel must provide a response to each of the commands sent 

by the Win32 process.  ClearPlant and ClearPort commands simply empty the current 

configurations.  When a plant is established through the SetPlant command, the Plant will 

have to discretize any continuous plants before any operations may proceed.  The 

AddPseudoPort operation provides the information needed to instantiate a PseudoPort 

object.  The PortManager creates these PseudoPort objects according to the descriptors 

passed in, adding them one by one to its configuration.  The actual start command results 

in two separate calls:  StartCache called upon the PortManager, and StartExecution called 

upon the Plant object.    When StartCache is called on the PortManager, it enables all of 

the physical ports that will be used for the simulation.  The PhysicalPortCache has an 

object for every physical interface, but only a select few may actually need to be written 

to or read from.  Calling EnablePort on the PhysicalPortCache indicates that the port 

enabled must be added to the list of ports that must be updated periodically.  The 

StartExecution operation causes the plant to initiate the PlantWatchdog and begin to 

evaluate the plant at discrete intervals. 

 

3.1.3.5 Simulation Cycle 
 

A simulation cycle consists of all of the operations required to fully evaluate the 

plant at a particular instant in time.  This involves retrieving inputs, evaluating outputs 

and states, and sending calculated output values down to PhysicalPortCache. 
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Figure 53:  Simulation Cycle 
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port/value pairs and returns them to the Plant.  The Plant uses these values as inputs and 

calculates the next set of outputs and states using the configured plant matrices according 

to Equations 7 and 8.   

The calculated states are saved for the next simulation cycle.  The outputs are sent 

to the PortManager through the UpdateOutputPseudoPorts call.  Again, the PortManager 

walks through its list of output PseudoPorts and calls Update on each of them with the 

calculated output value.  These PseudoPorts convert the new EngineeringValue to a 

physical output value. if necessary because it changed, and sends the data to the 

PhysicalPortCache through the SetPortValue operation.  The PhysicalPortCache stores 

the output value in its cache until the next time the physical port is updated, at which 

point the cached value will be sent directly to physical output. 

 Finally, the plant updates the Win32 process with the current input/output data.  

This is performed according to the configurable IO Update Method.  IO Information can 

be provided every simulation cycle, periodically every few simulation cycles, or only 

when requested by the Win32 process.  
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3.2 Implementation Details 
 

The preceding section detailed the design of the Control System Plant Simulator. 

This section provides information about how the design is implemented in the package 

provided.  Users are expected to customize, add to, and update the Control system Plant 

Simulator to meet their own needs.  The programs provided by this thesis are but one of 

many possible versions. 

 

3.2.1    Code and Programming Environment 
 

The Control System Plant Simulator is an open source project written with the 

intent of allowing end users to change and rebuilt code.  As such, some information 

regarding the build environment and code style is provided to simplify end user 

development. 

 

3.2.1.1 File Organization 
 

A complete listing of each file and where they are located is included in Appendix 

A.  This section provides basic information as to how the files are organized, and where 

to look for the provided executable Control System Plant Simulator files. 

 The Control System Plant Simulator is provided as a package that includes 

precompiled executable files, and modifiable source code.  All files are contained in a 

directory named CSPS.  This will be referred to as the root directory. 

 There are four folders in the root directory:  CODE, DOCUMENTS, 

RTX_PKG, and WIN_PKG.   

 

 

Figure 54:  Directory Structure 
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The CODE directory contains all of the Visual Studio and Visual Basic projects 

and source code.  The DOCUMENTS directory contains all of the documents provided 

for the CSPS Framework, including the User Manual.  The RTX_PKG directory 

contains the executables required to launch the provided RTX
®
 port of the Control 

System Plant Simulator.  Finally, the WIN_PKG contains all of the executables needed 

to launch the Win32 version of the CSPS.  Note that the Windows and RTX
®
 versions are 

similar, but must be compiled separately.   

 The CODE directory contains a separate folder for each project in the Visual 

Studio 6.0 project, the project itself, and a folder for the Visual Basic user interface.  It 

also contains a Shared folder used to house all of the code that does not change from 

version to version. 

 See Appendix A for a complete listing of the provided directories. 

 

3.2.1.2 Required Tools 
 

The Control System Plant Simulator was developed using Microsoft Visual 

Studio 6.0, and is intended to be run primarily as a 32 bit Windows console application.  

Two user interfaces are provided.  One is a console application using Microsoft Visual 

Studio 6.0, and another is a simple GUI built with Microsoft Visual Basic 6.0.  Two 

Computation Kernels are provided, both of which are built using the Microsoft Visual 

Studio programming environment.  One of these is a Win32 process that does not run in 

real time, but can utilize USB interfaces, and the other is an RTX
®
 process that DOES 

run in real time.  The RTX
®
 process was built using RTX

®
 version 6.0 libraries.  Two 

Win32 processes are provided as well.  While neither runs in real time, one of them must 

be built using the RTX
®

 libraries in order to communicate with the RTX
®
 Computation 

Kernel.  The Windows based Computation Kernel was written to communicate with the 

Data Translations 9812 data acquisition board.  To build this process the Data 

Translations DT-OpenLayers libraries must be included.  To successfully run this 

application, a Data Translations 9812 data acquisition device must be attached to the host 

PC via USB. 



89 

 

RTX
®
 runs in Kernel mode.  This is problematic because as a kernel mode application, 

RTX
®
 processes may only be launched by a process with administrative privileges.  This 

can be circumvented by creating a service that is responsible for launching RTX
®
 

processes because services run with administrator privileges.  ServiceExample.zip in the 

DOCUMENTS directory is an example produced by Ardence
® 

 Technical support team 

as an example of how to create a service that can launch RTX processes. 

 

3.2.1.3 Workspace and Projects 
 

The code for the Control System Plant Simulator is provided as part of a Visual 

Studio 6.0 workspace titled CSPS.  This workspace consists of the following projects: 

 CSPS_W32_CompKernel – The CSPS_W32_CompKernel project contains 

the code and configurations necessary to build the Win32 port of the 

Computation Kernel.  To build the CSPS_W32_CompKernel, the Active 

Configuration must be set to Win32 Release.  Building this project will create 

the CSPS_W32_CompKernel.exe executable, a copy of which will be placed 

in the directory /CSPS/WIN_PKG. 

 CSPS_RTX_CompKernel – The CSPS_RTX_CompKernel project contains 

the code and configurations necessary to build the RTX
®
 Computation Kernel.  

To build the CSPS_RTX_CompKernel, the Active Configuration must be set 

to Win32 RTSS Release which will ensure that the final executable is a true 

RTX
®
 process.  Building this project will create the 

CSPS_RTS_CompKernel.rtss RTX
®
 executable, a copy of which will be 

placed in the directory /CSPS/RTX_PKG.   

 CSPS_W32_Kernel – The CSPS_W32_Kernel project contains the code and 

configurations necessary to build a version of the Win32 process that is 

compatible with the CSPS_W32_CompKernel Computation Kernel process.  

The Operating System Abstraction files are configured such that Windows 

operating system calls are used for inter-process communication.  To build the 

CSPS_W32_Kernel, the Active Configuration must be set to Win32 Release.  
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Building this project will create the CSPS_W32_Kernel.exe executable, a 

copy of which will be placed in the directory /CSPS/WIN_PKG. 

 CSPS_W32_Kernel_RTX_PORT – The CSPS_W32_Kernel_RTX_Port 

contains the code and configurations necessary to build a version of the 

Win32process that is compatible with the CSPS_RTX_CompKernel 

Computation Kernel process.  The Operating System Abstraction files are 

configured such that RTX
®
 operating system calls are used for the inter-

process communication between the W32 process and the Computation 

Kernel.  To build the CSPS_W32_Kernel_RTX_PORT, the Active 

Configuration must be set to Win32 Release.  Building this project will create 

the CSPS_W32_Kernel_RTX_PORT.exe executable.  Note that this is NOT 

an RTX
®
 application.  It does NOT run in real-time.  It does need to be linked 

against the RTX
®
 runtime library to access RTX

®
 operating system calls in 

order to communicate with the CSPS_RTX_CompKernel.rss executable.  

Building this project places a copy of the CSPS_W32_Kernel_RTX_Port.exe 

file in /CSPS/RTX_PKG. 

 SimInterface – The SimInterface project provides a „helper‟ application 

outside of the scope of the Control System Plant Simulator.  It is not needed to 

run the CSPS successfully.  The RTX
®

 version of the Control System Plant 

Simulator provided does not provide USB support.  This means that the 

primary data acquisition device (Data Translations 9812) can not be used.  

Instead a simulated physical interface was created for the RTX
®
 port.  The 

CSPS_RTX_CompKernel is provided with a PhysicalPortCache designed to 

interact with this simulated interface.  It will read and write data to shared 

memory instead of to a physical interface.  The SimInterface program will 

allow the user to set input values, review output values, or run a script setting 

input values on the fly.  See Section 6.1 of the User Manual to review the 

operational instructions for the SimInterface executable.  To build the 

SimInterface project, the Active Configuration must be set to Win32 Release.  

Building this project will create the SimInterface.exe executable, a copy of 

which will be placed in /CSPS/RTX_PKG. 



91 

 

 SimpleUI – SimpleUI is a project providing an example of a simple text 

based Win32 that can interface with any version of the Control System Plant 

Simulator.  Note that while it can be used as a fully functional interface, it is 

intended to serve as an example end users may review to help them create 

their own User Interface processes.  For more information on how to construct 

a User Interface process, see Section 3 of the User Manual.  It demonstrates 

how to make function calls from the User Interface to the Win32 process 

utilizing the UiWinInterface.dll.  To build the SimpleUI project, the Active 

Configuration must be set to Win32 Release.  Building this project will create 

the SimpleUI.exe executable, a copy of which will be placed in 

/CSPS/WIN_PKG and /CSPS/RTX_PKG.  See Section 3.5 of the User 

Manual for more information about the commands accepted by Simple UI.  

 UiWinInterface – The UiWinInterface project provides the files and 

configurations needed to construct the UiWinInterface dynamically linked 

library that can be used to aid User Interface development.  To build the 

UiWinInterface project, the Active Configuration must be set to Win32 

Release.  Building this project will create the UiWinInterface.dll library, a 

copy of which will be placed in /CSPS/WIN_PKG and /CSPS/RTX_PKG.   

 

In addition, a single Visual Studio project is provided.  ExampleUI.vbp is a 

visual basic project that constructs a fully operational GUI that can interface with the 

Win32 process through the use of the UiWinInterface library.  Like SimpleUI this is not 

intended to be used as an interface, but rather to serve as an example of how such a user 

interface may be created, but it is a fully functional working interface.  See section 3.6 of 

the User Manual for more information about the ExampleUI interface and the 

functionality provided. 
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3.2.1.4 Conventions 
 

As users are expected to modify the code provided by the Control System Plant 

Simulator, some information must be provided as to how the code is organized.  This will 

help facilitate searching through the code when modifying or porting it. 

 

3.2.1.4.1 LocalDefinitions.h 
 

The vast majority of the code used in each project goes unchanged.  Typically 

only the Operating System Abstraction objects must actually be changed.  Different 

implementations of the PhysicalPortCache and PhysicalPort classes will also be needed 

for different physical port interfaces.  The two ports of the Control System Plant 

Simulator use different physical data acquisition systems; the RTX
®
 port interfaces with 

the SimInterface and the Win32 port interfaces with the Data Translations 9812 data 

acquisition device.  As noted in Section 3.1.2.1.1 operating system objects provide two 

implementations, a primary and a secondary.  For the Win32 port, all operations are 

carried out as Windows operating system calls, so the secondary implementation is 

ignored.  For the RTX
®

 port, the secondary implementation contains RTX
®
 calls.  This 

duality is achieved without modifying the Operating System Abstraction code through 

the use of pre-compiler directives.   

Every project contains a file titled LocalDefinitions.h.  LocalDefinitions.h defines 

a set of pre-compiler definitions that indicate whether or not a secondary interface is 

needed.  If the secondary interface is required, it is up to the users to modify the 

Operating System Abstraction files to make the proper secondary interface operating 

system calls.  LocalDefinitions.h also contains definitions that indicate which set of 

physical ports to include.  Two sets are provided – SimPorts and DTPorts for the 

SimInterface and Data Translations 9812 respectively – but more may be added.  This 

limits the amount of code that must be changed in the PortManager and prevents the 

creation of separate versions of the PortManager for each physical interface. 
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3.2.1.4.2 Extensions and Header Files 
 

The Control System Plant Simulator is written in C++.  All source files are 

written with .cpp extensions.  Header files are provided with .h extensions.  Every class is 

declared in its own header file.  Detailed information about the signature of each function 

provided by the class is stored in the header file, but is left out of the source.  This 

information includes what the function does, what each of its parameters are, and what 

the return value represents.  Should a user be confused as to what a particular function 

does, or what the parameters represent, the .h file has the answers.   

 

3.2.1.4.3 Naming Conventions 
 

Naming conventions do not follow standard Windows MFC naming conventions.  

No type information is included in the name of a particular variable, and all names are 

provided in „bumpy‟ notation.  Local data members are prefaced by „m‟, as in 

mDataMember.  Variables are lowercase.  Functions and class names are both uppercase.   

 

3.2.2    Data Acquisition Device 
 

The Control System Plant Simulator executables provided are designed to 

interoperate with the Data Translations 9812 data acquisition device.  This is a USB 

driven data acquisition device that provides the following interfaces: 

 

 One 8 bit Digital Input 

 One 8 bit Digital Output 

 8 Analog Inputs accepting voltages from -10 volts to +10 volts 

 2 Analog Outputs, providing voltages from -10 volts to +10 volts. 

 

The DTPhysicalPortCache and DTPhysicalPort classes have been provided to manage 

this data acquisition device.   
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3.2.3    Plant Definition Types Supported 
 

The Control System Plant Simulator package provided offers six different ways to 

define a plant, each of which, with the exception of the state space method, must be 

converted to a set of state space equations.  The plant may be defined as a set of State 

Space matrices, as a transfer function defined by a numerator and denominator, as a 

transfer function defined by a set of poles and zeros, as a matrix of transfer functions 

defined either  way, or as a set of nonlinear equations.  Transfer functions are converted 

to state space equations as per the controller algorithm defined in Section 2.1.4.  Matrices 

of transfer functions are converted to state space equations by converting each transfer 

function and placing the resultant state space matrix as a submatrix within the overall 

system matrix.  Conversion of a set of nonlinear equations is performed as described in 

Section 2.1.7.  New plant definition types may be added by modifying the 

PlantConfigurationManager class, and adding to the options available to the user when 

setting the plant.  
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3.3 Evaluation 
 

In order to gage the effectiveness of the Control System Plant Simulator, a 

number of plants were simulated using both versions (Win32 and RTX
®
) and compared 

against a Matlab simulation of the same plant.  Note that the Win32 version can fully 

interface with the Data Translations DT 9812 device, and therefore can behave as a full 

Hardware-In-The-Loop system.  Each plant was simulated using the Win32 version along 

with the Data Translations DT-9812 data acquisition device, allowing for full physical 

IO.  All outputs provided for the Win32 version of the CSPS are oscilloscope captures.  

The RTX
®
 port, however, cannot send data to the Data Translations DT-9812 device.  

Instead, the RTX system was interfaced with a simulated port interface.  All RTX
®
 

results were taken from the log file produced while running under RTX
®
.   

Finally, the CSPS was provided to a class of Real-time Systems students as a tool 

to enable them to develop their own real-time plants. The following plants were used to 

test the effectiveness of the Control System Plant Simulator. 

 

3.3.1    Results Comparison 
 

The following table outlines the results for each plant against the expected values. 

 
Table 2:  Results Comparison 

Plant 
CSPS 

Version 
Expected Value Simulated value % difference 

Spring-Mass 

Win32 

0.15 at 1.26 sec 0.14 at 1.26 sec -6.6% 

0.251 at 2.26 sec 0.25 at 2.26 sec -0.4% 

0.329 at 5.38 sec 0.33 at 5.38 sec +0.3% 

RTX
®
 

0.15 at 1.26 sec 0.148 at 1.3 sec -1.3% 

0.251 at 2.26 sec 0.251 at 2.3 sec 0% 

0.329 at 5.38 sec 0.33 at 5.4 sec +0.3% 

Airplane Pitch 

Win32 

0.44 at 4.57 sec 0.44 at 4.56 sec 0% 

0.468 at 6.83 sec 0.46 at 6.80 sec -1.7% 

0.838 at 16.1 sec 0.812 at 16.1 sec -3.1% 

RTX
®
 

0.44 at 4.57 sec 0.44 at 4.6 sec 0% 

0.468 at 6.83 sec 0.47 at 6.8 sec +0.4% 

0.838 at 16.1 sec 0.84 at 16.1 sec +2.4% 

Bus 

Suspension 
Win32 

2.23e-5 at 0.633 sec 2.04e-5 at 0.64 sec -8.5% 

3.55e-6 at 1.25 sec 3.30e-5 at 1.28 sec -7.0% 
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1.29e-5 at 28.2 sec 1.02e-5 at 28.2 sec -20.9% 

RTX
®
 

2.23e-5 at 0.633 sec 2.2e-5 at 0.6 sec -1.34% 

3.55e-6 at 1.25 sec 4.0e-6 at 1.2 sec * +15% 

1.29e-5 at 28.2 sec 1.3e-5 at 28.2 sec +0.8% 

Car Shock 

System 

Win32 

Car Pos 

1.42 at 1.34 sec 1.52 at 1.38 sec +7.0% 

0.988 at 6.14 sec 1.02 at 6.14 sec +3.2% 

Win32  

Wheel Pos 

1.26 at 1.24 sec 1.22 at 1.24 sec -3.2% 

0.955 at 5.76 sec 0.98 at 5.76 sec +2.6% 

RTX
®
 

Car Pos 

1.42 at 1.34 sec 1.42 at 1.3 sec 0% 

0.988 at 6.14 sec 0.988 at 6.1 sec 0% 

RTX
®
     

Wheel Pos 

1.26 at 1.24 sec 1.26 at 1.2 sec 0% 

0.955 at 5.76 sec 1.00 at 5.8 sec 4.7% 

* the value at 1.3 sec = 3.0e-6, so 3.55 for 1.25 is reasonable. 

 

The sections that follow contain specifics about each of the simulated plants and 

the values obtained from them. 

 

3.3.2    Spring – Mass System 
 

One of the simplest plants evaluated is that of a spring and weight system.  This 

system models a mass connected to a spring.  A force, the input, is applied pushing the 

mass, which stretches the spring.  The spring and a damping frictional force work against 

the mass.   

 

3.3.2.1 State Space Equations 
 

The state space equations are defined as follows: 

 

State Matrix:     

Input Matrix:     

Output Matrix:    

Feedthrough Matrix:    

[25] 
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3.3.2.2 Matlab Simulation 
 

Figure 53 contains the Matlab simulated step response to the Spring – Mass system. 

 

 
Figure 55:  Matlab Simulation of the Step Response of  the Spring-Mass System 

Note the indicated data points along the curve.   These three data points are 

compared directly to data points taken at similar points in time during physical 

simulation. 

 

3.3.2.3 Windows CSPS Simulation 
 

The following figures contain captures from an oscilloscope during the step-

response simulation of the Spring – Mass  plant. 

 



98 

 

 
Figure 56:  Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 1.26 Seconds 

 

 Figure 54 displays the oscilloscope capture of the step response of the Spring-

Mass plant.  The cursors measure the difference between time and voltage from the initial 

state.  After 1.26 seconds the voltage has increased by 0.14 volts.  Compare this to the 

Matlab simulation, where after 1.26 seconds, the amplitude had reached a value of 0.15. 

 

 

Figure 57:  Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 2.26 Seconds 
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 Figure 55 shows that after 2.26 seconds, the voltage has increased by 0.25 volts.  

Compare this to the Matlab simulation where, after 2.26 seconds, the amplitude had 

reached a value of 0.251. 

  

 

 

Figure 58:  Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 5.38 Seconds 

 Finally, figure 56 shows that after 5.38 seconds, the voltage has reached 0.33 

volts.  Compare this with the Matlab simulation where, after 5.38 seconds, the amplitude 

reached a value of 3.29. 

 

Note that the signal appears very noisy.  This happens primarily because the curve 

is very small; it reaches steady state at approximately 300 millivolts.   The captures were 

obtained after zooming in a great deal to capture the distinct features of the curve causing 

small variations to appear quite large. 
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3.3.2.4 RTX® CSPS Simulation 
 

The following are diagrams created from the log files produced during the 

simulation of plant using the RTX
®
 CSPS framework.  

 

 
Figure 59:  RTX Simulation of Spring-Mass System 

 

 

One can see through inspection that the output produced is similar to that of the 

actual curve as calculated by Matlab.  Specific values produced by the simulation to 

compare against those of Matlab are:   

 0.148 volts at 1.3 seconds 

 0.251 volts at 2.3 seconds 

 0.33 volts at 5.4 seconds 

 

 

3.3.3    Airplane Pitch Plant 
 

To demonstrate the ability of the Control System Plant Simulator to represent an 

unstable plant, the following model of how an aircraft will pitch given the elevator 

deflection angle was simulated.   
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3.3.3.1 State Space Equations 
 

The model was defined through the following state space equations: 

 

State Matrix:     

Input Matrix:     

Output Matrix:    

Feedthrough Matrix:    

[24] 

 

3.3.3.2 Matlab Simulation 
 

Figure 58 contains the Matlab simulated step response to the plant 

 

 
Figure 60:  Matlab Simulation of Airplane Pitch Plant 

Note the indicated data points along the curve.   These data points will be 

compared against the physical values obtained during simulation.  It is also worth noting 

that the response increases without bounds; the system is unstable.   
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3.3.3.3 Windows CSPS Simulation 
 

The following figures contain captures from an oscilloscope during the step-

response simulation of the Airplane Pitch plant. 

 

 
Figure 61:  Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 4.56 Seconds 

 

Figure 59 displays the oscilloscope capture of the step response of the Airplane 

Pitch plant.  The cursors measure the difference between time and voltage from the initial 

state.  After 4.56 seconds the voltage has increased by 0.44 volts.  Compare this with the 

Matlab simulation where after 4.57 seconds, the amplitude reached a value of 0.44. 
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Figure 62:  Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 6.80 Seconds 

 

 Figure 60 shows that after 6.80 seconds, the output has increased by 0.460 volts.  

Compare his with the Matlab simulation where, after 6.83 seconds, the amplitude reached 

a value of 0.468.   

 

 
Figure 63:  Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 16.1 Seconds 

 

 Finally, figure 61 shows that, after 16.1 seconds, the voltage has increased by 

0.812 volts.  Compare this with the Matlab simulation that shows that after 16.1 seconds, 

the amplitude had reached a value of 0.838. 
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3.3.3.4 RTX® CSPS Simulation 
 

The following are diagrams created from the log files produced during the 

simulation of plant using the RTX
®
 CSPS framework.  

 

 

  
Figure 64:  RTX Simulation of Airplane Pitch Plant 

 

Again one can clearly see that the simulation closely follows the curve produced 

by Matlab. Actual data points to be compared with those read from Matlab are: 

 0.44 volts at 4.6 sec 

 0.47 volts at 6.8 sec 

 0.84 volts at 16.1 sec 

 

3.3.4    Bus Wheel and Suspension System 
 

Bus suspension systems can be simplified as spring – damper systems.  The 

following system was chosen to be simulated because its output is extremely small.  This 

will not only test the Control System Plant Simulator‟s ability to simulate a plant, but also 

the ability of the Analog Pseudo Ports to scale values up into output ranges.  If the pseudo 

port is configured to scale all engineering values from 0 to 0.00003 to the physical range 

of -10 volts to 10 volts, than any engineering value of 0 will be scaled down to -10 volts 

of physical output, where a value of 0.00003 will be amplified to 10 volts.  Thus all 
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values will be scaled by approximately 666,666.67.  Any calculation errors should be 

magnified and noticeable. 

 

3.3.4.1 State Space Equations  
 

The State Space equations are defined as follows: 

 

State Matrix:     

Input Matrix:     

Output Matrix:    

Feedthrough Matrix:    

[24] 

 

3.3.4.2 Matlab Simulation 
 

Figure 63 contains the Matlab simulated step response to the plant 

 

 
Figure 65:  Matlab Simulation of Bus Wheel and Suspension System 
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 The bus suspension system oscillates before reaching a steady state final value.  

Note however, how very small the indicated values are.  These data points will be 

compared against the scaled up versions provided by the physical output during 

simulation. 

 

3.3.4.3 Windows CSPS Simulation 
 

The following figures contain captures from an oscilloscope during the step-

response simulation of the Bus Suspension plant. 

 

 
Figure 66:  Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 0.64 

Seconds 

 

 Figure 64 is an oscilloscope capture of the step response of the plant, as simulated 

by the Control System Plant Simulator.  Here one sees that after 640 milliseconds the 

system has a voltage difference of 13.6 volts from startup.  The pseudo port for this 

particular output was established with a minimum value of 0 and a maximum value of 

0.00003, meaning that the engineering value 0 is scaled to -10 volts for physical output, 

and the engineering value of 0.00003 is scaled up to +10 volts.  This is the reason the 

output has been recentered around 0 volts, and why the difference between the initial 

position and the measured peak is so great.  A difference of 13.6 volts is approximately 
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the equivalent of an amplitude of 0.0000204.  Compare this to the Matlab simulation 

where, after 633 milliseconds the system reached an amplitude of .0000223. 

 

Figure 67:  Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 1.28 

Seconds 

 

Figure 65 indicates a value of 2.2 volts after 1.28 seconds.  After conversion, this is 

approximately equal to an amplitude of 0.0000033.  Compare this to the Matlab 

simulation where, after 1.25 seconds the amplitude reached a value of .00000355. 

 

 

Figure 68:  Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 28.2 

Seconds 
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Finally, figure 66 indicates a value of 6.8 volts after 28.2 seconds of execution.  After 

conversion, this is approximately equal to an amplitude of 0.0000102.  Compare this with 

the Matlab simulation where, after 28.2 seconds the system reached an amplitude of 

0.0000129. 

 

3.3.4.4 RTX® CSPS Simulation 
 

As described previously, it was only possible to simulate the RTX
®
 port.  The 

following is a chart of the data collected during that simulation. 

 

 
Figure 69:  RTX Simulation of Bus and Wheel Suspension System 

 

The curve produced by the Control System Plant Simulator is remarkably similar 

to the curve produced by Matlab. Actual data points to be compared with those read from 

Matlab are: 

 0.000022 at 0.6 sec 

 0.000004 at 1.2 sec 

 0.000013 at 28.2 sec 

 

 

 

3.3.5    Car and Wheel Shock Absorber System  
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The final plant used for evaluation is a simple automobile shock absorber system.  

The system has one input (Road position) and two outputs (Car position and Wheel 

Position), testing the multiple output capability of the Control System Plant Simulator. 

 

3.3.5.1 State Space Equations 
The State space equations for the Car and Wheel Shock Absorber system are 

defined as follows: 

 

State Matrix:     

Input Matrix:     

Output Matrix:    

Feedthrough Matrix:    

[25] 

 

3.3.5.2    Matlab Simulation 
 

Figure 68 contains the step response of the Car Suspension system plant.  
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Figure 70:  Matlab Simulation of Car Shock Absorber System 

 

Note the data points taken at the peak of both outputs and at the point near the 

steady state.   These data points will be compared against the values obtained during 

simulation. 

 

3.3.5.3    Windows CSPS Simulation 
 

The following figures contain captures from an oscilloscope during the simulation 

of the Car Suspension system plant. 
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Figure 71:  Oscilloscope Capture of Simulation of Car Position Step Response with Data Point at 1.38 Seconds 

 

Figure 69 is a capture of the car position step response.  Note the difference in time and 

voltage are measured from the beginning of simulation.  At 1.38 seconds the output has 

peaked at 1.52 volts.  Compare this with the Matlab simulation where after 1.34 seconds 

the amplitude reached a value of 1.42. 

 

 
Figure 72:  Oscilloscope Capture of Simulation of Car Position Step Response with Data Point at 6.12 Seconds 
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Figure 70 is a capture of the car position step response as well, with time and voltage 

measurements from zero to near steady state.  Note that the system steadies out after 

approximately 6.12 seconds at 1.08 volts.  Compare with the Matlab simulation where 

after 6.14 seconds the amplitude reached a value of 0.988. 

 

 
Figure 73:  Oscilloscope Capture of Simulation of Wheel Position Step Response with Data Point at 1.24 Seconds 

 

Figure 71 is a capture of the wheel position step response.  The change in time and in 

voltage are measured from 0, thus the voltage peaks at 1.22 volts after 1.24 seconds.  

Compare with the Matlab simulation where after 1.24 seconds the amplitude reached a 

value of 1.26. 
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Figure 74:  Oscilloscope Capture of Simulation of Wheel Position Step Response with Data Point at 5.76 Seconds 

 

Figure 72 is a capture of the wheel position step response as well, with time and voltage 

measurements from zero to near steady state.  Note that the system steadies out after 

approximately 5.76 seconds at 0.98 volts.  Compare with the Matlab simulation where, 

after 5.76 seconds, the amplitude reached a value of 0.995. 
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3.3.5.4    RTX® CSPS Simulation 
 

The following charts were produced from data captured during simulation under 

RTX
®
. 

 

 
Figure 75:  RTX Simulation of Car Position Step Response 

 

Figure 73 provides Car Position data from the RTX
®
 simulation of the plant.  Relevant 

data points for comparison against the Matlab plot are as follows: 

 1.42 volts at 1.3 seconds 

 0.988 volts at 6.1 seconds 
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Figure 76:  RTX Simulation of Wheel Position Step Response 

Figure 74 provides Wheel Position data from the RTX
®
 simulation of the plant.  Relevant 

data points for comparison against the Matlab plot are as follows: 

 1.22 volts at 1.24 seconds 

 0.98 volts at 5.76 seconds 

 

3.3.6     Comments on Results 
 

 

In general, the results are very encouraging, with most simulated error at or below 

three percent.  Considering these simulations are discretized versions of continuous 

plants, sampled at the relatively low frequency of ten hertz, and that the physical 

simulations were conducted in Windows and not a Real-Time system, the results are 

encouraging.  

There are, of course, a few notable exceptions.  The first physical measurements 

of the Spring-Mass plant and of the Car Shock Absorber system were both large when 

compared to the other measurements.  In the case of the Spring-Mass system, granularity 

of the measurements becomes a problem.  The expected value was 0.15, and the 

measured value was 0.14.  This is as close as the measurements can be without being 

equal.  The large percentage difference is more a result that the values are small than that 

they differ in any meaningful way.  The measurement taken for the Car Shock Absorber 

system is not truly comparable to that taken in Matlab as the values are measured at 
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slightly different moments in time.  The curve indicates that, should a closer 

measurement have been possible, the outcome would have been much better. 

 Finally, the values from the Windows simulation of the Bus Suspension System 

were not very close.  When one considers the fact that the output of the plant is being 

magnified by over 65,000 it is easy to understand why these values differ so much, but 

the percent error in this case would be limiting.  For this reason, the Control System Plant 

Simulator can not be recommended for systems that require such gross magnification of 

their output.  Scaling Engineering Values to physical data must be kept to a more 

reasonable range.  Worth noting, however, is the fact that the curves constructed were 

similar in structure and in timing.  It is just the magnitude that was unfortunately 

inaccurate. 

 

3.3.7    Classroom Application 
 

The Control System Plant Simulator was developed around the idea that its 

primary function would be to assist in the education of control system development.  

During development, the Control System Plant Simulator was provided to a class of 

graduate and undergraduate Software and Computer Engineering students.  The students 

used the Control System Plant Simulator to develop simple VxWorks controllers for the 

Car and Wheel shock absorber system described in section 3.3.5.  The project required 

them to manually tune the coefficients of a standard Proportional-Integral-Derivative 

controller to minimize the overshoot and settling time of the plant.  They did not know 

the plant model and tuned the controller experimentally.  The experiment was a success 

as the students were able to construct reasonable controllers that produced real physical 

control signals to manage the simulated plant.  There were no complaints or problems 

using the CSPS Framework for this project.  This serves as evidence that the Control 

System Plant Simulator has the capability to become a reasonably useful tool in 

education. 
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4. Future Work 
 

There are many ways the Control System Plant Simulator may be improved and 

extended.  The Control System Plant Simulator was designed with future development in 

mind.  From complete modifications to how plants are input and discretized, to the 

addition of robust user interfaces designed for specific plant simulations, the Control 

System Plant Simulator is a framework upon which many modifications and 

customizations may be made.  Specific examples include 

 User Interfaces.  It cannot be stressed enough that end developers should take 

advantage of the modular design of the Control System Plant Simulator by 

constructing their own user interfaces tailored for individual plants.  Considerable 

effort was invested to simplify the process of interfacing UI applications with the 

CSPS, not the least of which is the UiWinInterface dynimcally linked library, 

allowing any program that can link a dll access to the features of the CSPS.  See 

Section 3, User Interface Development of the CSPS User Manual (Provided in 

Appendix B) 

 Addition of new data acquisition devices.  The data acquisition device chosen for 

the initial version of the CSPS was certainly limiting.  While the DT-9812 unit 

performed admirably, the USB interface eliminates the ability to use true real-

time systems as USB is inherently non-deterministic.  Other developers are 

encouraged to provide their own data acquisition devices and their own physical 

port implementations that do not suffer such restrictions.  This would open up 

real-time development for the CSPS and improve the accuracy and complexity of 

the plants simulated, as samples could be made at much higher rates.  See the 

Data Acquisition Device Development section of the CSPS User Manual 

(provided in Appendix B) for more information on how to create and integrate 

new devices.  

 Addition of new methods.  The CSPS provides basic methods for discretization 

and state space realization that can certainly be improved upon.  More complex 

and accurate methods for converting continuous plants to discrete, or for finding a 

set of state space equations from transfer functions exist and would only enhance 
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the ability of the CSPS to accurately simulate plants.  Engineering Value 

arithmetic can be altered, and would see a performance improvement by 

switching from true floating point to integer based fixed point systems for 

example. 
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5. Conclusion 
 

The goal of this Thesis was to provide a framework upon which known modeled 

plants could be launched and simulated as part of a Hardware-In-The-Loop system with 

an eye toward aiding education in controls development.  Control system education 

benefits greatly by having students develop real controllers that are connected to real 

systems to monitor the success or failure of their designs.  Such physical systems can be 

expensive or dangerous, making their use in an educational laboratory environment 

difficult at best.  The Control System Plant Simulator provides a suite of applications that 

simulate plants with physical output accurate enough that students can design and 

develop controllers for them.  The framework provides plenty of hooks upon which end 

users may attach their own interfaces and data acquisition systems.  It is flexible and can 

be as complex or simple as needed.    

In short, the goals for the project were met successfully.  An expandable 

framework for the simulation of plants has been created.  The CSPS is provided at no 

cost to all as an open source system with the hope that end users customize it, make it 

their own, and share their alterations with all.   
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Appendix A:  Directory Structure 
 

 

The following appendix consists of listings of all of the contents of each directory in the 

CSPS package.   

 

The Legend for directory listings is as follows 

 

Folder 
File 

 

Root Directory 
 

The root directory is the top level directory in the CSPS package.  It is organized as 

follows: 

 

CSPS 
- CODE 
- DOCUMENTATION 

- Control System Plant Simulator Thesis.pdf 
- Users Guide.pdf 
- Directory Structure.pdf 

- RTX_PKG 

- CSPS_RTX_CompKernel.rtss 
- CSPS_W32_Kernel_RTX_PORT.exe 
- ExampleUI.exe 
- SimInterface.exe 

- SimpleUI.exe 
- UiWinInterface.dll 

- WIN_PKG 
- CSPS_W32_CompKernel.exe 

- CSPS_W32_Kernel.exe 

- ExampleUI.exe 

- SimpleUI.exe 

- UiWinInterface.dll 

 

The CODE directory contains all of the source code used to create the CSPS, and will be 

described fully in the sections that follow. 

 

The DOCUMENTATION directory contains the documentation associated with the 

CSPS.  The user‟s guide, and original thesis are provided here. 
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The RTX_PKG directory contains the compiled executables and libraries needed to 

launch the RTX version of the CSPS.  This version has been built only for use with the 

simulated interface, but future data acquisition devices may be ported to it. 

 

The WIN_PKG directory contains the compiled executables and libraries needed to 

launch the Win32 version of the CSPS.  This version has been built to work with Data 

Translation‟s DT-9812 data acquisition device, through future data acquisition devices 

may be ported to it.  Note that NO aspect of this version of the CSPS runs in real time. 

 

CODE Directory 
 

The CODE directory contains all of the source code and projects needed to create the 

CSPS. 

 

- CODE 
- CSPS_RTX_CompKernel 

- Utils 

- LocalDefinitions.h 
- StdAfx.h 

- CSPS_RTX_CompKernel.cpp 
- CSPS_RTX_CompKernel.dsp 

- CSPS_RTX_CompKernel.h 
- CSPS_RTX_CompKernel.plg 

- CSPS_W32_CompKernel 
- Utils 

- LocalDefinitions.h 
- CSPS_W32_CompKernel.cpp 

- CSPS_W32_CompKernel.dsp 
- CSPS_W32_CompKernel.plg 
- StdAfx.cpp 
- StdAfx.h 

- CSPS_W32_Kernel 
- Utils 

- LocalDefinitions.h 
- CSPS.ico 
- CSPS_W32_Kernel.cpp 

- CSPS_W32_Kernel.dsp 
- CSPS_W32_Kernel.plg 
- IconScript.aps 
- IconScript.rc 
- resource.h 

- StdAfx.cpp 
- StdAfx.h 

- CSPS_W32_Kernel_RTX_PORT 
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- Utils 

- LocalDefinitions.h 
- StdAfx.h 

- CSPS.ico 
- CSPS_W32_Kernel_RTX_PORT.cpp 
- CSPS_W32_Kernel_RTX_PORT.dsp 
- CSPS_W32_Kernel_RTX_PORT.h 

- CSPS_W32_Kernel_RTX_PORT.plg 
- IconScript.rc 
- resource.h 
- StdAfx.h 

- Shared 
- SimInterface 

- Utils 

- LocalDefinitions.h 
- InputScriptRunner.cpp 
- InputScriptRunner.h 
- OutputPrinter.cpp 

- OutputPrinter.h 
- PhysicalPort.h 
- SimInterface.cpp 
- SimInterface.dsp 

- SimInterface.h 

- SimInterface.plg 
- SimPortInterface.cpp 
- SimPortInterface.h 

- StdAfx.cpp 
- StdAfx.h 

- SimpleUI 
- Utils 

- LocalDefinitions.h 

- UiWinInterface.h 
- SimpleUI.cpp 
- SimpleUI.dsp 
- SimpleUI.plg 

- StdAfx.cpp 
- StdAfx.h 

- UiWinInterface 
- Utils 

- LocalDefinitions.h 
- StdAfx.cpp 

- StdAfx.h 
- UiWinInterface.cpp 
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- UiWInInterface.def 

- UiWinInterface.dsp 
- UiWinInterface.h 

- UiWinInterface.plg 

- VB 
- CSPS_Main.frm 
- ExampleUI.vbp 

- ExampleUI.vbw 
- GlobalModule.bas 
- InitialCondForm.frm 
- IOUpdateForm.frm 

- NonLinearForm.frm 

- NumDenomForm.frm 
- NumDenomMatrix.frm 
- PseudoPortForm.frm 
- SchedulePortForm.frm 

- SetDMethodForm.frm 
- StateSpaceForm.frm 
- ZPKForm.frm 
- ZpkMatrixForm.frm 

 

The CSPS_RTX_CompKernel directory contains all of the code needed to create the 

RTX port of the Computational Kernel.  Note that this project accesses a large number of 

code files stored in the shared directory. 

 

The CSPS_W32_CompKernel directory contains all of the code needed to create the 

Win32 port of the Computational Kernel.  Note that this project accesses a large number 

of code files stored in the shared directory. 

 

The CSPS_W32_Kernel directory contains all of the code needed to create the Win32 

port of the system Kernel.  Note that this project accesses a large number of code files 

stored in the shared directory. 

 

The CSPS_W32_Kernel_RTX_PORT directory contains all of the code needed to create 

the RTX port of the system Kernel.  Note that this project accesses a large number of 

code files stored in the shared directory. 

 

The Shared directory contains all code used by more than one project.  There is a 

significant number of files stored here, and it will be discussed in a future section. 

 

The SimInterface directory contains all of the code needed to create the simulated 

interface to be used with the RTX port of the Control System Plant Simulator. 

 

The SimpleUI directory contains all of the code needed to build the example console user 

interface. 
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The UiWinInterface directory contains all of the code needed to build the 

UiWinInterface.dll library that may be used to simplify the user interface development 

process. 

 

The VB directory contains a visual basic project that provides an example of a Visual 

Basic GUI that uses the UiWInInterface library to communicate with the CSPS.   

 

Shared Directory Map 
 

The Shared directory contains all code that is used by more than one process space.  The 

vast majority of the CSPS code is stored here. 

 

- Shared 
- CompKernel 
- Descriptors 
- Interfaces 
- Kernel 
- OsAbstraction 

The shared directory contains five directories, each of which will be described in detail in 

the following sections.   

 

CompKernel Directory Map 
  

 The CompKernel directory is a subdirectory of the Shared directory.  It contains 

all of the code specific to the computational kernel.  This code is shared between different 

ports of the Computational Kernel process. 

 

- CompKernel 
- Plant 

- Plant.cpp 

- Plant.h 
- PlantWatchdog.cpp 
- PlantWatchdog.h 

- Ports 
- DtPorts 

- Lib 

- Oldaapi32.lib 
- Oldaapi.h 
- Oldacfg.h 
- Oldadefs.h 

- Oldsptch.h 
- Olerrors.h 
- OLMEM32.lib 
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- Olmem.h 

- Oltypes.h 
- DTPhysicalPort.cpp 

- DTPhysicalPort.h 
- DTPhysicalPortCache.cpp 
- DTPhysicalPortCache.h 

- SimPorts 

- SimPhysicalPort.cpp 
- SimPhysicalPort.h 
- SimPhysicalPortCache.cpp 
- SimPhysicalPortCache.h 

- SimPortInterface.cpp 

- SimPortInterface.h 
- AnalogPseudoPort.cpp 
- AnalogPseudoPort.h 

BinaryPseudoPort.cpp 

- BinaryPseudoPort.h 
- PhysicalPort.cpp 
- PhysicalPort.h 

- PhysicalPortCache.cpp 
- PhysicalPortCache.h 
- PortManager.cpp 
- PortManager.h 

- PseudoPort.cpp 

- PseudoPort.h 

- Utils 
- EngineeringValue.cpp 
- EngineeringValue.h 

- EngineeringValueMatrix.cpp 
- EngineeringValueMatrix.h 
- PortValuePair.h 

 

 

The Plant directory contains the code related to the plant object in the Computational 

Kernel process.  This includes both the plant and the plant watchdog. 

 

The Ports directory provides all code related to ports in the system.  Physical ports, 

including specific implementations of the physical ports such as the DT Ports and the 

Simulated Interface Ports, pseudo ports, and port manager code is all stored here. 

 

The Utils directory contains the utilities used by the Computational Kernel processes.  

This includes all engineering value related code, as well as the PortValuePair descriptor. 
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Descriptors Directory Map 
 

Descriptors are header files that contain the structures that get passed through the CSPS.  

The Descriptors directory in the Shared folder contains the major descriptors for the 

system. 

 

- Descriptors 

- PhysicalPortDescriptor.h 

- PseudoPortDescriptor.h 

- StateSpaceDescriptor.h 

- TFDescriptor.h 

 

Interfaces Directory Map 
 

The Interfaces Directory in the Shared folder contains all interface related code for every 

interface in the system. 
 

- Interfaces 
- CompKernelInterfaces 

- CompToWinOutgoingInterface.cpp 
- CompToWinOutgoingInterface.h 
- WinToCompIncomingInterface.cpp 

- WinToCompIncomingInterface.h 

- DataTypes 

- CompToWin.cpp 
- CompToWin.h 
- ConfigParams.h 

- UiToWin.cpp 
- UiToWin.h 
- WinToComp.cpp 
- WinToComp.h 

- WinToUi.cpp 
- WinToUi.h 

- KernelInterfaces 
- CompToWinIncomingInterface.cpp 

- CompToWinIncomingInterface.h 

- UiToWinIncomingInterface.cpp 

- UiToWinIncomingInterface.h 

- WinToCompOutgoingInterface.cpp 

- WinToCompOutgoingInterface.h 

- WinToUiOutgoingInterface.cpp 

- WinToUiOutgoingInterface.h 

- UiInterfaces 
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- UiToWinOutgoingInterface.cpp 

- UiToWinOutgoingInterface.h 
- WinToUiIncomingInterface.cpp 

- WinToUiIncomingInterface.h 
-  IncomingInterface.cpp 
-  IncomingInterface.h 
-  OutgoingInterface.cpp 

-  OutgoingInterface.h 
 

The CompKernel directory contains the code necessary to establish the Computational 

Kernel‟s side of the Win32 Kernel-Computational Kernel interface. 

 

The DataTypes directory contains the code that defines all of the individual data types 

passed between interfaces.  Interface semaphore names, Shared memory structures, and 

interface structures are defined in these files. 

 

The KernelInterfaces directory contains the code necessary to establish the Win32 

Kernel‟s side of the Win32 Kernel-Computational Kernel interface, and the Win32 

Kernel‟s side of the Win32 Kernel-User Interface Process interface.   

 

The UiInterfaces directory contains the code necessary to establish the User Interface‟s 

side of the Win32 Kernel-User Interface Process interface. 

 

Kernel Directory Map 
 

The Kernel Directory in the Shared folder contains all code used by the Win32 Kernel 

processes. 

 

- Kernel 
- Managers 

- FileManager.cpp 

- FileManager.h 
- LogManager.cpp 
- LogManager.h 
- PlantConfigurationManager.cpp 

- PlantConfigurationManager.h 

- PlantFileManager.cpp 
- PlantFIleManager.h 
- PortConfigurationManager.cpp 

- PortConfigurationManager.h 
- PseudoPortFileManager.cpp 
- PseudoPortFileManager.h 
- SystemManagement.cpp 

- SystemManagement.h 



ix 

 

- Utils 

- Complex.cpp 
- Complex.h 

 
The Managers subfolder contains all of the manager code that makes up the bulk 

of the Win32 Kernel process. 

 

The Utils subfolder contains the Complex structure, used for complex arithmetic.   

 

OS Abstraction Directory Map 
 

The OsAbstraction directory contains all of the Operating system abstraction files.  

Should the CSPS be ported to a different platform, these files would have to be altered. 

 

- OsAbstraction 
- FileInterface.cpp 
- FileInterface.h 
- InterfaceSemaphore.cpp 

- InterfaceSemaphore.h 
- SharedMemoryInterface.cpp 
- SharedMemoryInterface.h 
- Thread.cpp 

- Thread.h 
 

Complete Directory Map 
 

The following listing provides every directory in the package.  Note that files have been 

hidden in this listing. 

 

CSPS 
- CODE 

- CSPS_RTX_CompKernel 
- Utils 

- CSPS_W32_CompKernel 
- Utils 

- CSPS_W32_Kernel 
- Utils 

- CSPS_W32_Kernel_RTX_PORT 
- Utils 

- Shared 
- CompKernel 

- Plant 
- Ports 



x 

 

- DtPorts 
- lib 

- SimPorts 
- Utils 

- Descriptors 
- Interfaces 

- CompKernelInterfaces 
- DataTypes 
- KernelInterfaces 
- UiInterfaces 

- Kernel 
- Managers 
- Utils 

- OsAbstraction 
- PhysicalPorts 

- SimInterface 
- Utils 

- SimpleUI 
- Utils 

- UiWinInterface 
- Utils 

- VB 
- DOCUMENTATION 
- RTX_PKG 
- WIN_PKG 

 

 

  



xi 

 

Appendix B:  User Manual 


