
Control System Plant Simulator:

A Framework for Hardware-In-The-Loop Simulation

By

David Chandler

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Computer Engineering

Supervised by

Dr. James Vallino

Department of Software Engineering

B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology

Rochester, NY

June 2007

___Date:______________

Dr. James Vallino

Primary Advisor – R.I.T. Dept. of Software Engineering

___Date:______________

Dr. Juan Carlos Cockburn

Secondary Advisor – R.I.T. Dept. of Computer Engineering

___Date:______________

Dr. Roy Czernikowski

Secondary Advisor – R.I.T. Dept. of Computer Engineering

Thesis Release Permission Form

Rochester Institute of Technology

Kate Gleason College of Engineering

Title: Control System Plant Simulator

I, DAVID CHANDLER, HEREBY GRANT PERMISSION TO THE WALLACE MEMORIAL LIBRARY TO REPRODUCE MY
THESIS IN WHOLE OR PART.

 David Chandler

 Date

i

Dedication

For my Mother, who made me the person I am today, and for my Fiancée Cheri for the love and

support that made this possible.

ii

iii

Acknowledgements

I am forever indebted to my thesis advisor, Dr. James Vallino of the Department of Software

Engineering at Rochester Institute of Technology. His guidance, insight, advice, and

encouragement kept this thesis on track through every obstacle. Dr. Vallino was always

available to provide help, offer suggestions, and review progress. I could have asked for

absolutely nothing more in an advisor.

I would also like to express my deep gratitude to Dr. Roy Czernikowski of the Department of

Computer Engineering at Rochester Institute of Technology. Dr. Czernikowski made a personal

dedication to my education from day one, and I cannot thank him enough.

Finally, I would like to thank Dr. Cockburn of the Department of Computer Engineering at

Rochester Institute of Technology. His knowledge of control engineering is simply unmatched,

and without his help this work could not have been completed.

My sincerest thanks to you all.

iv

v

Abstract

Control systems are found in many aspects of modern life. From household appliances such as

computer controlled ovens and refrigerators to complex missile defense systems, the popularity

and importance of automated controllers has grown exponentially over the past few decades [28].

This thesis proposes to develop a simulation framework that can be used in the development of

such digital control systems in academic environments.

Control Systems Design is a common subject for engineering students world-wide. Many tools

exist to help students design and simulate digital controllers, such as MATLAB and SIMULINK,

but actually implementing and testing a designed controller is important as well. Students learn

far more from their studies when they have an actual laboratory experiment to help relate the

abstract concepts of engineering to the real life design problems [32]. A number of simplified

physical systems such as the inverted pendulum and digital servo are common in academic

environments, but designing controllers for more practical systems is difficult due to the

prohibitive costs associated with the equipment involved [21].

Most simulation frameworks readily available for students focus on the controller itself. They

aid in design of the controller‟s mathematical model, but do not aid in physically testing the

actual implementation of the controller. The Control System Plant Simulator will simulate the

object a digital control system designer wishes to control – referred to as a „Plant‟. The Control

System Plant Simulator follows the Hardware-in-the-loop concept [16] in that it takes the place

of a physical plant. Designed and implemented controllers are attached to the Control System

Plant Simulator, which will behave just as an actual plant will from the viewpoint of the

controller. The simulator will read input from a digital controller external to the host computer

of the simulator. It will evaluate the input in real-time, and provide output to the digital

controller just as the actual plant will.

The Control System Plant Simulator can be used to aid in the development of control systems.

Individuals can use the tool to prototype control systems without being forced to use expensive

or limited physical resources. This can reduce production costs of control systems, and make

possible more realistic control systems development in academic environments where resources

vi

are more limited. This allows for the education of the next generation of control system

designers and implementers in a more realistic setting.

vii

Table of Contents

1. INTRODUCTION AND MOTIVATION .. 1

2. BACKGROUND .. 6

2.1 CONTROL THEORY .. 6
2.1.1 Introduction ... 6
2.1.2 Transfer Function ... 7
2.1.3 State Space Equations .. 8
2.1.4 Converting Transfer Functions to State Space ... 10
2.1.5 Discrete-Time Systems ... 12
2.1.6 Converting Continuous Time to Discrete Time Systems ... 13
2.1.7 Nonlinear Systems ... 14

2.2 REAL TIME SYSTEMS ... 16
2.3 HARDWARE-IN-THE-LOOP SIMULATION ... 18

3. THE CONTROL SYSTEM PLANT SIMULATOR .. 21

3.1 SYSTEM DESIGN ... 21
3.1.1 Process Space Overview ... 21

3.1.1.1 User Interface Process ... 23
3.1.1.2 The Win32 Process ... 24
3.1.1.3 Computation Process ... 26
3.1.1.4 Interfaces ... 29
3.1.1.5 Threading Structure ... 32

3.1.2 Detailed Design .. 33
3.1.2.1 Operating System Abstraction ... 34
3.1.2.2 Interface Parent Classes ... 39
3.1.2.3 User Interface .. 42
3.1.2.4 Win32 Process.. 47
3.1.2.5 Computation Kernel Process .. 58

3.1.3 System Interactions .. 76
3.1.3.1 System Launch ... 76
3.1.3.2 Saving and Loading Operations .. 77
3.1.3.3 Physical Data Retrieval and Caching .. 80
3.1.3.4 Simulation Start ... 81
3.1.3.5 Simulation Cycle ... 84

3.2 IMPLEMENTATION DETAILS... 87
3.2.1 Code and Programming Environment .. 87

3.2.1.1 File Organization .. 87
3.2.1.2 Required Tools ... 88
3.2.1.3 Workspace and Projects .. 89
3.2.1.4 Conventions ... 92

3.2.2 Data Acquisition Device ... 93
3.2.3 Plant Definition Types Supported ... 94

3.3 EVALUATION ... 95
3.3.1 Results Comparison .. 95
3.3.2 Spring – Mass System .. 96

3.3.2.1 State Space Equations .. 96
3.3.2.2 Matlab Simulation .. 97
3.3.2.3 Windows CSPS Simulation ... 97
3.3.2.4 RTX

®
 CSPS Simulation ... 100

3.3.3 Airplane Pitch Plant.. 100
3.3.3.1 State Space Equations .. 101

viii

3.3.3.2 Matlab Simulation .. 101
3.3.3.3 Windows CSPS Simulation ... 102
3.3.3.4 RTX

®
 CSPS Simulation ... 104

3.3.4 Bus Wheel and Suspension System .. 104
3.3.4.1 State Space Equations .. 105
3.3.4.2 Matlab Simulation .. 105
3.3.4.3 Windows CSPS Simulation ... 106
3.3.4.4 RTX

®
 CSPS Simulation ... 108

3.3.5 Car and Wheel Shock Absorber System ... 108
3.3.5.1 State Space Equations .. 109
3.3.5.2 Matlab Simulation .. 109
3.3.5.3 Windows CSPS Simulation ... 110
3.3.5.4 RTX

®
 CSPS Simulation ... 114

3.3.6 Comments on Results ... 115
3.3.7 Classroom Application ... 116

4. FUTURE WORK .. 117

5. CONCLUSION .. 119

APPENDIX A: DIRECTORY STRUCTURE .. I

APPENDIX B: USER MANUAL .. XI

ix

List of Figures

Figure 1. Typical Digital Control System [24]... 1
Figure 2: Control System Block Diagram .. 6
Figure 3: Block Diagram of State Space Matrices [28] ... 10

Figure 4: Digital Control System…………………………………………………………………………………………………..12

Figure 5: Linearization of Nonlinear Equation [3] ... 15
Figure 6: RTX® Architecture .. 17
Figure 7: CSPS and Physical Plant as Black Box Systems .. 18
Figure 8: Classical Control Setup [16] ... 19
Figure 9: Hardware-in-the-loop method [16] ... 19
Figure 10: System Diagram ... 22
Figure 11: PhysicalPort and PseudoPort Interaction .. 28
Figure 12: General Inter-Process Communication ... 30
Figure 13: Class Thread ... 35
Figure 14: Class InterfaceSemaphore .. 36
Figure 15: Class SharedMemoryInterface.. 37
Figure 16: Class FileInterface .. 38
Figure 17: Interfaces between Process Boundaries .. 39
Figure 18: Class IncomingInterface ... 40
Figure 19: Class Outgoing Interface .. 41
Figure 20: Class WinToUiIncomingInterface .. 43
Figure 21: Class UiToWinOutgoingInterface .. 45
Figure 22: Win32 Process Diagram ... 47
Figure 23: Class UiToWinIncomingInterface .. 48
Figure 24: Class CompToWinIncomingInterface .. 49
Figure 25: Class WinToUiOutgoingInterface .. 50
Figure 26: Class WinToCompOutgoingInterface .. 51
Figure 27: Class PortConfigurationManager ... 52
Figure 28: PlantConfigurationManager ... 53
Figure 29: Class LogManager .. 54
Figure 30: Class FileManager .. 55
Figure 31: Class SystemManagement .. 57
Figure 32: ComputationKernel Process ... 59
Figure 33: Class WinToCompInterface ... 60
Figure 34: Class CompToWinOutgoingInterface .. 61
Figure 35: Class EngineeringValue ... 62
Figure 36: Class EngineeringValueMatrix ... 63
Figure 37: Class PhysicalPort .. 63
Figure 38: Class PhysicalPortCache .. 65
Figure 39: Class PseudoPort .. 67
Figure 40: Class AnalogPseudoPort... 69
Figure 41: Class BinaryPseudoPort ... 70
Figure 42: Class PortManager ... 71
Figure 43: Class Plant .. 73
Figure 44: Class PlantWatchdog .. 74
Figure 45: System Launch Sequence Diagram .. 76
Figure 46: Load Port Mapping Sequence Diagram .. 77
Figure 47: Save Port Mapping Sequence Diagram .. 78
Figure 48: Load Plant Sequence Diagram.. 79
Figure 49: Save Plant Sequence Diagram .. 79
Figure 50: Physical Data Retrieval and Caching Sequence Diagram ... 80
Figure 51: Simulation Start - Win32 Process Side ... 82
Figure 52: Simulation Start - Computation Kernel Side .. 83
Figure 53: Simulation Cycle .. 85
Figure 54: Directory Structure ... 87
Figure 55: Matlab Simulation of the Step Response of the Spring-Mass System ... 97
Figure 56: Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 1.26 Seconds 98
Figure 57: Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 2.26 Seconds 98
Figure 58: Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 5.38 Seconds 99
Figure 59: RTX Simulation of Spring-Mass System ... 100

file:///L:\Thesis\Documents\Control%20System%20Plant%20Simulator%20Thesis%206.docx%23_Toc170929430
file:///L:\Thesis\Documents\Control%20System%20Plant%20Simulator%20Thesis%206.docx%23_Toc170929439
file:///L:\Thesis\Documents\Control%20System%20Plant%20Simulator%20Thesis%206.docx%23_Toc170929458

x

Figure 60: Matlab Simulation of Airplane Pitch Plant ... 101
Figure 61: Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 4.56 Seconds 102
Figure 62: Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 6.80 Seconds 103
Figure 63: Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 16.1 Seconds 103
Figure 64: RTX Simulation of Airplane Pitch Plant .. 104
Figure 65: Matlab Simulation of Bus Wheel and Suspension System ... 105
Figure 66: Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 0.64 Seconds 106
Figure 67: Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 1.28 Seconds 107
Figure 68: Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 28.2 Seconds 107
Figure 69: RTX Simulation of Bus and Wheel Suspension System .. 108
Figure 70: Matlab Simulation of Car Shock Absorber System .. 110
Figure 71: Oscilloscope Capture of Simulation of Car Position Step Response with Data Point at 1.38 Seconds....................... 111
Figure 72: Oscilloscope Capture of Simulation of Car Position Step Response with Data Point at 6.12 Seconds....................... 111
Figure 73: Oscilloscope Capture of Simulation of Wheel Position Step Response with Data Point at 1.24 Seconds 112
Figure 74: Oscilloscope Capture of Simulation of Wheel Position Step Response with Data Point at 5.76 Seconds 113
Figure 75: RTX Simulation of Car Position Step Response .. 114
Figure 76: RTX Simulation of Wheel Position Step Response .. 115

List of Tables

Table 1: Discrete Equivalence Equations... 13
Table 2: Results Comparison ... 95

xi

Glossary

Component: Basic element of the Framework. The components of the Framework are the User

Interface, the Plant Simulation Unit (PSU), the File I/O Unit, the Physical ports and the

Pseudo ports.

Controller: External to the framework, the controller is any system designed to produce input

signals for the framework for the purpose of controlling the active simulated plant.

Engineering Units: See Plant Engineering Data.

File I/O Unit: Component responsible for writing output and status to files.

Framework: The system as a whole. Framework refers to all of the components and the

interfaces between them.

Interface: The communication that is allowed to take place between any two components

I/O Specification: An I/O Specification is a set of parameters that divide the physical binary

ports into smaller labeled „virtual‟ ports, and scales analog port input to plant engineering

values.

Physical Data Values: Data as it appears on the physical data registers.

Physical Port: Physical ports are the software representations of the physical interfaces of a

connected data acquisition unit. Input physical ports read data from the hardware interface

and store it as a physical data value. Output physical ports write physical data values to the

hardware interface. Physical ports may be either input or output, and may provide or accept

either digital or analog data.

Plant: Any physical object that is to be controlled. For the purposes of this program, „Plant‟

will refer to the simulation of such an object.

Plant Definition Mode: Framework operation mode when the user is allowed to define and

modify the parameters that specify the simulated plant.

Plant Definition Type: A specific methodology by which a plant has been defined. Examples

include State Space defined plants or Transfer Function defined plants.

Plant Engineering Data: Data that has been formatted for the simulated plant.

Plant Simulation Unit (PSU): Responsible for simulating a defined plant. Takes plant

engineering data values from the Pseudo input ports, uses them to evaluate the internal

simulated plant, and provides output, as plant engineering data values, to the Pseudo output

ports.

xii

Pseudo Port: Pseudo ports provide the bridge between physical ports, and the inputs and

outputs of a plant. Each Pseudo port is connected to an input or output of the plant, and one

physical port. Input pseudo ports are responsible for converting the physical data values

provided by physical ports into plant engineering data that is meaningful to the plant. Output

pseudo ports are responsible for converting plant engineering data provided by the plant back

into physical data values that can be sent to the hardware interface by the physical ports.

Pseudo ports may be Digital Physical Ports may be divided into smaller ports.

Simulation Cycle: The Simulation Cycle consists of acquiring a set of inputs from the external

data acquisition device. These inputs are formatted by pseudo ports into plant engineering

data values and provided to the PSU. The PSU uses these inputs to define a new set of

outputs based on executing the defined plant model for one cycle. These engineering units

are returned to a pseudo port to be converted back into physical data. Physical output is

forwarded to the physical port connected to the pseudo port that performed this conversion.

This data is sent to the physical interface by the physical port. This cycle is repeated until the

simulation is stopped.

Simulation Mode: Framework operation mode when simulation cycles are executed. The user

can do nothing in this mode but stop the simulation.

User Interface (UI): This component provides the framework‟s external interface for control of

the plant simulation and to monitor plant operation.

1

1. Introduction and Motivation

This thesis focuses upon the study of control systems, the plants they are designed to control, and

real time simulation. It provides a low-cost flexible plant simulator that can be used for the

development of digital controllers. Furthermore, this plant simulator provides benefits in

academic teaching and research environments.

Digital Controllers are control systems that are implemented using digital computers to control a

subject system, called a plant. Figure 1 shows a typical digital control system. An input signal

r(t) is supplied, indicating to the control system what the desired output of the plant should be.

This input is sampled through the use of an analog to digital converter. The difference of this

signal and the discrete output of the plant is provided to the controller. The controller takes an

input signal and generates a control command using a difference equation. This difference

equation can be expressed in the frequency domain (after taking Z-transforms) as a transfer

function provided that all initial conditions are zero. The digital output of the controller is

converted to analog signals through the use of a digital to analog converter and provided to the

plant. The plant will use these values to control its actuators. Sensors monitor the controlled

variable of the output to close the loop. [24]

Figure 1. Typical Digital Control System [24]

2

Control System simulators have been developed in the past. The Shadow Plants Dynamic

Simulation Testbed by Honeywell is an example of one such simulator [29]. However, these

simulation systems are typically tailor-made for specific situations, products, or markets.

Additionally, they can be prohibitively expensive, which reduces their ability to be widely

adopted. They often lack the flexibility required for extendable interfaces (both user interfaces

or data interfaces). Oftentimes specific information about the controller to be designed is

required before these tools can even be used, and rarely are they designed to be connected to

external controllers. The vast majority of these simulators are designed to enable the design of

the theoretical controller, and not for testing the implemented design.

The Control System Plant Simulator developed here addresses the following issues:

 Current plant simulation frameworks are very expensive. The Control System Plant

Simulator is an open source project, provided at no cost.

 Most simulators are designed to simulate the Control and the plant together. They

simulate the mathematical models of each, and provide information about how these

models interact. While extremely helpful during initial design phases, these simulators

can not test the implementation of these designs. The Control System Plant Simulator

runs a hardware-in-the-loop simulation that takes the place of a physical plant. It is

designed to be connected to an implemented controller, and behave as a real plant would.

This eliminates the expense or danger of testing actual equipment, while fully exercising

the implemented controller.

 Hardware-in-the-loop test simulations have been made for specific situations, products,

or markets. The Control System Plant Simulator provides a general framework upon

which plants of different natures may be simulated by simply providing a model of the

plant.

 The Control System Plant Simulator is extendable in that user interfaces, plant

descriptions, and physical interfaces may be updated or customized with little difficulty.

3

The open source nature of the project ensures that deeper and more complex

customizations are possible.

 Most hardware-in-the-loop simulators require specialized equipment or test boards to run.

The Control System Plant Simulator is a Windows XP application. A port of the

computation portion of the simulator utilizing Ardence RTX
®
 Real-time Extension for

Control of Windows
®
 is provided for Real-Time simulation. While the initially designed

plant simulator was tailored to a particular data acquisition board, the simulator is flexible

enough that other data acquisition boards can be substituted with minimal modifications.

The Control System Plant Simulator is designed with academic environments in mind. It is

of the utmost importance for students to be able to implement their designs as physical

controllers, but it is often too expensive to test these controllers on physical targets. The targeted

plant may be expensive, fragile, limited, or dangerous. The Control System Plant Simulator

(CSPS) can be used in place of this equipment, and provide results for the students to monitor

and determine the success of their controller design. Because of the low cost goal, the system

may be used to prototype controllers developed by each student individually. This allows

students the ability to work on controllers, correcting mistakes as they go, without the constant

use of limited or unavailable lab equipment. The CSPS is designed to simulate many different

kinds of plants, and as such has a flexible front end. The graphical user interface may be

swapped out for any other designed by end users and implementers. These interfaces may be

used to display animated versions of the plant (such as watching the level of water in a tank raise

and lower) and are designed such that there is no impact to the system simulation. Section

3.1.1.1.2 describes UI Interchangeability in greater detail. The CSPS is designed to be portable.

All operating system calls are abstracted in a separate OS Layer. Should an operating system

change be necessary, only this layer will need to be altered.

 The importance of simulating a designed digital controller is self evident. Simulation

enables the designer to see what is going to happen before spending considerable effort

implementing a design, or putting expensive equipment – and potentially human life – at risk

with an untested design. However, one cannot ignore the physical experimentation phase of

design altogether. In their paper “Theory, simulation, experimentation: an Integrated Approach

4

to Teaching Digital Control Systems”, Harold Klee and Joe Dumas go to great pains to outline

how important it is to both design and implement controllers [23]. They argue that “The

combination of hands-on experience and computer simulation with the more traditional

theoretical lecture material provides a well-rounded learning experience that better prepares the

students to implement digital control systems in the real world” [23]. They describe a three step

course for undergraduate students that begins with theory and how to design a digital controller

mathematically. The controller the students design is then simulated to work out any problems

with their theoretical design. Finally the controller is implemented and connected to real

physical hardware. This „start-to-finish‟ design and implementation is invaluable to students as

it provides the whole picture.

 This argument for making sure that students implement their controller designs and

attempt to actually run their controllers on plants has been made a number of times. In their

paper “Merging Physical Experiments Back Into The Learning Arena”, Bjarne A Foss, Tor I

Eikass, and Morten Hovd bemoan the recent trend “towards increased use of simulation in

engineering education, coupled with a decline of the use of physical experiments.”[12] They

admit that the expense of physical equipment is prohibitive, but outline a number of reasons why

it is important to implement the controllers they design. “The typical student therefore finds it

motivating to work with laboratory experiments. A successful laboratory experiment is some

proof that the student has been able to perform a task which is of relevance to the real

world.”[12] This argument is central to the purpose of this thesis. Simply simulating a

theoretical controller is insufficient when learning control systems. One must attempt to build

the controller, and make it actually control something. The CSPS is not a physical controller, but

it behaves as one. To the student developing a controller, the CSPS must be treated exactly the

same as a physical controller. The student must produce a controller that produces output and is

insensitive to time delays, noise, and many other physical characteristics that are not present

when simulating the control-plant interaction as a set of transfer functions.

 The purpose of this thesis is to simplify the physical requirements for the experimentation

phase of control systems education. Academic institutions often are forced to choose between

asking students to design controllers for low-cost plants that are too simple to be realistic, or

never attempting to control anything at all, relying entirely on simulations. This thesis provides

5

a framework upon which a plant may be created and run on a Windows XP environment, with

the option of running in real time should a user decide to use Ardence RTX
®

 Real-time

Extension for Control of Windows
®
. This plant simulation may be used in place of a real

physical plant, making physical equipment less important. Students may perfect their designs at

their own workstations without the need of additional equipment.

6

2. Background

The following section provides background necessary to understand the concepts upon

which the Control System Plant Simulator is based on. Basic information about Control

Systems, Real Time Simulation, and Hardware-In-The-Loop simulation are provided.

2.1 Control Theory

2.1.1 Introduction

Control Theory is the study of how to automate the control of a dynamic system. The

system under control, referred to as a plant, may have any number of variables that must be

controlled. These controlled variables could be, for example, the speed of a car, the temperature

of a room, or the physical level of water in a tank. Control designers develop controllers that are

connected to the plant. These controllers set inputs and provide resources to the plants in such a

way that the plant provides outputs at desired levels. For example, an automobile cruise control

system regulates the throttle position in order to produce a desired speed. In any case, some

input must be provided to the controller to indicate the desired plant output. This input is

referred to as a reference, or set point value [28].

 Sometimes, feedback is required to stabilize the plant. Feedback occurs when the output

from the plant is provided to the controller. This allows the controller to monitor the response of

the plant and determine how much the plant‟s output differs from the desired output [14]. See

figure 2 for details.

Controller Plant
Controlled Variable+

-

Set Point Value

Control

Signal

Feedback

Figure 2: Control System Block Diagram

7

2.1.2 Transfer Function

In order to develop controllers, a designer must have some idea of how a plant will

respond to the inputs provided. This means that the plant must be modeled mathematically.

Equations must be developed that describe how the output of the plant is generated given an

input. These are typically high order ordinary differential equations. If the differential equation

is linear and time invariant, then it can be solved using Laplace transforms. The ratio of the

Laplace transform of the output or response function to the Laplace transform of the input or

driving function is referred to as a transfer function [14]. Transfer functions provide a compact

and convenient description of linear time invariant systems, and they can be easily obtained from

the dynamic equations that describe the system.

For example, Equation 1 provides a general differential equation mapping input x to output y that

may define a plant to be controlled.

The transfer function for this system is obtained by taking the Laplace Transforms of Equation 1

assuming zero initial conditions. This is shown in Equation 2, which simplifies to Equation 3.

8

This allows a plant to be described as a rational function of the complex variable s instead of a

differential equation. Such a system is referred to as an nth order system, with n being the

highest power of s in the denominator [14]. It is important to note that a transfer function can

only map one input to one output. In order to describe a plant that has more than one input or

output using transfer functions, a matrix of transfer functions must be used.

One may also factor the numerator and denominator polynomials that make up the transfer

function, and express the transfer function as a product of factors, also called the zero-pole-gain

form:

where K is a scalar constant referred to as the gain, the set of zi are the zeros of the

system, and the set of pi are the poles of the system. Note that these poles and zeros may be

complex numbers. However for the system to be implementable, all complex poles or zeros

must come in complex conjugate pairs [31]. Poles and zeros are helpful when analyzing the

response of the system the transfer function represents. They are used in the design of

controllers, and to study the stability, causality, phase, and other factors of the system [14].

2.1.3 State Space Equations

As noted earlier, defining systems with multiple inputs and multiple outputs (MIMO) in

terms of transfer functions is cumbersome, as the number of transfer functions required is equal

to the number of inputs multiplied by the number of outputs. More common is the use of a set of

state space matrices. Ogata defines the term state to be “the smallest set of variables (called state

variables) such that the knowledge of these variables at t = t0, together with the knowledge of the

input for t ≥ t0, completely determines the behavior of the system for any time t ≥ t0” [28]. That

is, the current output can be determined as a function of the current states and the current set of

inputs. Additionally, the next state can be determined as a function of the current state and

current set of inputs as well.

9

If x is a vector of n state variables, and u is a vector of r inputs, then the state equations are

defined by

and the outputs y1(t), y2(t), … ym(t) are

If the system is linear and time invariant, the state space equations become

Here, A is the State Matrix, B is the Input Matrix, C is the Output Matrix, and D is the

Feedthrough Matrix. The following diagram shows the relationship of these matrices and the

inputs and outputs of the system:

10

Figure 3: Block Diagram of State Space Matrices [28]

One notes that equation 9 relates the state space equations back to the transfer function of the

system.

2.1.4 Converting Transfer Functions to State Space

Transfer functions can be converted to state space equations in order to simplify their

evaluation. A realization is a set of state space equations equivalent to a given transfer function.

There are infinitely many state space realizations for a transfer function. Of the many possible

realizations, the “Controller Canonical Form” is one of the simplest since it can be found directly

from the coefficients of the transfer function. However, the resulting state-space matrices are not

suitable for numerical computations. [14].

Consider the following n order system

Note that some of the but not all, may be zero as the numerator does not have to have

the same order as the denominator.

11

 The denominator can be normalized by dividing every element by , as shown in

equation 11.

 Note that the system has only one input and one output, and that will equal 0 unless

the order of the numerator is equal to that of the denominator.

The State matrix is obtained by taking the negative of each coefficient in the

denominator, ignoring the coefficient of the leading term, and placing them in the first row to

form a companion matrix as follows:

 The Input matrix has a 1 as its very first element, all others are 0

 The output matrix values are equal to the original numerator values – the denominator

values (skipping the first) scaled by .

 Finally, the feedthrough matrix consists of only one element of value .

 [13]

Equations 12 – 15 form the “controller‟ realization of the transfer function given.

12

2.1.5 Discrete-Time Systems

With the adoption of the microprocessor, more and more systems are controlled digitally.

This means that the input of these systems is not read continuously, but rather at discrete time

intervals. Likewise, new output values are calculated at discrete time intervals. Typical Digital

to Analog Converters (DACs) operate as a zero order hold, meaning these outputs are held

constant until they are recalculated.

Figure 4: Digital Control System

To reflect these differences, instead of using the Laplace transform, the Z transform is used.

Due to quantization in the analog to digital converter, uk is an approximation of the value of u(t)

at time kT where T is the sampling period. There are numerous methods by which a system may

be descretized, including the forward rectangular, the backward rectangular, and bilinear

methods [13].

The Z transformed transfer function is still expressed as a ratio of two polynomials, and can still

be described in terms of poles and zeros. State space equations may be used to describe the

transfer function (or functions) as well. Instead of the continuous values, discrete state space

equations calculate the values at discrete time instants.

13

where k is the specific time index. [13]

2.1.6 Converting Continuous Time to Discrete Time Systems

Calculating discrete equivalents of continuous systems is commonly done by various

approximations. The actual Z transform is simply the Laplace transform of the ideal sampled

function. The forward rectangular, backward rectangular, and bilinear sampling approximation

methods result in the following substitutions to convert a Laplace transformed continuous system

to a Z transformed discrete system:

Table 1: Discrete Equivalence Equations

Discrete Equivalence Equations

Forward Rectangular

Backward Rectangular

Bilinear

In order to discretize a set of state space equations, start with the original state space equations

defined in Equations 7 and 8, and perform a Laplace transform on it, yielding

One may substitute for s as per equations 19, 20, and 21, convert to discrete equations, and solve

for x(k+1) and y(k). Doing so results in the following discrete equivalent state space equations:

14

Forward Rectangular:

Backward Rectangular:

Bilinear:

[13]

It is worth noting that the Forward Rectangular method is the least stable, and may require very

high sampling rates to yield acceptable results.

2.1.7 Nonlinear Systems

All of the previous examples hold true for linear equations. However, there are many

situations where the state equations described in Equations 7 and 8 are nonlinear. That is,

systems for which the principle of superposition does not apply [28]. There is no simple

equation for simulating nonlinear systems: the response to two inputs cannot be calculated by

treating one input at a time and adding the results. To handle this problem, such systems can be

approximated by linear equations for a particular operating region. In actuality, truly linear

physical systems are rare. Many electromechanical, hydraulic, and pneumatic systems are only

linear for limited operating ranges.

Consider a one dimensional system . The function is represented by a

curve, and the tangent at a given point represents a linear approximation of the function at

15

that point. Thus,

 [3]

Figure 5: Linearization of Nonlinear Equation [3]

 This process remains the same as the dimensions of the system increase. The state space

equations of a linearized system then become

Where . [3]

This version of the simulator only simulates linear time-invariant systems.

16

2.2 Real Time Systems

A real-time system is a system that performs operations under specific timing constraints

imposed on it by the real-time behavior of the „outside‟ world [35]. Real time systems must

produce results and perform actions that are both correct, and delivered within very specific time

constraints. Reading an input line, or writing to an output line must be done while the data is

still meaningful. These timing constraints are typically deterministic, meaning they refer to

values and not statistics or averages [35].

Real time systems are divided into two main groups: Hard and Soft real time systems. A

real time system that is „Hard‟ is one that absolutely must meet the deadlines imposed on its

tasks. If one of these deadlines is missed, even slightly, the system experiences a critical failure.

Examples of hard real time systems include pace makers and nuclear reactor control systems.

Soft real-time systems can withstand missing constraints. The effectiveness or quality of the

data may be diminished, but failures are not critical. Examples of soft real-time systems include

streaming video systems. If constraints are not met, the quality of the video may degrade, but the

entire system is not lost.

Real-Time Operating Systems are a natural fit for digital control systems. They are

designed to operate while interfacing with a real-world system, and provide certain guarantees as

to what specific time intervals inputs will be read and outputs will be provided. Accurate

sampling, and timely input updates are vital to the successful operation of a digital control

system.

 The CSPS provides a compiled version of the Computation Kernel that has an RTX
®
 port

of the OS abstraction layer. RTX
®
 provides a set of libraries and a realtime subsystem that is

installed as a Windows kernel device driver. The libraries provide access to this realtime

subsystem through an API defined by RTX
®
 to closely match that of the typical Win32 API.

The RTX
®
 architecture was designed such that it extends, not encapsulates, Windows to prevent

interference with the Windows kernel. RTX
®

runs its own thread scheduler that preempts all

Windows processing. This is how real time operation is realized. The typical RTX
®

 application

17

consists of two programs: a program written for Win32, and another written for the RTSS

Subsystem. Shared memory and IPC objects establish communication between these two

processes. This allows a developer to use all of the tools available for windows development,

and still have real time performance. [1]

Figure 6: RTX® Architecture

18

2.3 Hardware-In-The-Loop Simulation

Hardware-In-The-Loop simulation is a technique that replaces real plants with simulated

counterparts. These simulated plants accept inputs and produce outputs just as the real one does.

From a „black-box‟ perspective, the Hardware-In-The-Loop simulation and the physical plant

appear exactly the same (figure 5).

Controller

Data Acquisition

Device

PC Running

CSPS

Sensor

Signals

Control

Signals

Acquired

Data

Calculated

Output

Physical Plant

Controller

Control

Signals

Sensors

Physical

Measurements

Sensor

Signals

Control System Plant

Simulator System
Physical Plant System

Figure 7: CSPS and Physical Plant as Black Box Systems

In his paper “Hardware-In-The-Loop Simulation and Its Application In Control

Education” Wojciech Grega states that “The concept of „hardware-in-the-loop (HiL) method is to

use a simulation model of the process and the real target hardware.”[16] He goes on to describe

how a simulated model must process signals in real time and provide them to a controller as the

real physical plant would. The controller provides control signals to the simulation model just as

it would the actual plant it was designed to control. In this way, the simulation appears as a

„black-box‟ with inputs and outputs matching that of the target plant. The simulation takes the

place of an actual physical plant. Figures 6 and 7 show the difference between the classical

experimental setup (figure 6) and the hardware-in-the-loop setup (figure 7). In the classical

19

setup, a PC runs the implementation of the digital controller. The controller feeds output to a

data acquisition device that will convert the digital commands to input for the plant. The plant

physically responds to these input commands. Typically sensors monitor the state of the plant

and provide information in the form of output signals. These signals are then fed back into the

data acquisition device which provides them to the controller running on the PC. The hardware-

in-the-loop method diagrammed by figure 7 shows the idea that the physical hardware that

makes up a plant may be fully replaced by another computer. In figure 7 PC2 runs the

implementation of the digital controller. The controller produces command signals that are

converted to the exact same input as before by a data acquisition device. The difference is that

the converted signals are given to PC1 through an I/O board, instead of a physical plant. PC1

runs a simulation of the plant. It takes these inputs, runs the simulation based upon them, and

provides the output through the I/O board just as the plant did in figure 1. This is returned to PC

2 running the controller through the data acquisition device to close the loop.

Figure 8: Classical Control Setup [16]

Figure 9: Hardware-in-the-loop method [16]

The Control System Plant Simulator behaves exactly the same way. The goal of

the Control System Plant Simulator is to provide a framework that completely takes the

place of almost any physical plant – with limitations imposed only by the physical

constraints of the target computer and data acquisition board. Grega argues that the use

of physical plants for experimental verification of controllers designed by students is

extremely important for illustrating theory at work, but continues to explain that complex

laboratory implementations of industrial plants are too expensive and dangerous for

education purposes. He proposes Hardware-In-The-Loop simulations instead. This is the

20

motivation behind the Control System Plant Simulator. The CSPS provides a means by

which academic environments can simulate a plant to be controlled by the students‟

controllers. The simulation may be simple, and used as a verification step before testing

the controller on a physical plant, or it may be used entirely as a substitute for complex

equipment like a jet engine. Grega explains that “The key to hardware-in-the-loop

simulation method lies in the software.”[16] He outlines specifically the need for such a

tool as the Control System Plant Simulator.

Other hardware-in-the-loop simulators exist, such as those implemented by the

dSPACE GmbH company, but these are targeted towards the TMS320 DSP processors

and are highly specialized systems. Grega explains that the “drawback of this

configuration is the price: the code generation software is very expensive due to its small

market share.”[16]. For his simulations, he had to generate a real time hardware-in-the-

loop plant of his own as few academic institutions could afford the dSPACE tools. Grega

concludes his paper arguing that without actually applying designed controllers to actual

industrial situations, control engineering may as well be taught as an applied mathematics

course. He states that “Often, the control projects are not complemented by practical

activities due to the high cost of laboratory equipment.”[16].

21

3. The Control System Plant Simulator

The Control System Plant Simulator is a solution to the problem of how to have a

large number of students develop and test digital controllers on realistic plants. It has

been shown that the benefits of actual in-lab work are many, but the use of real physical

hardware is oftentimes impractical [16]. The Control System Plant Simulator is a

Hardware-In-The-Loop suite of programs that provide a simulation framework for any

plant that can be expressed as a set of State Space equations, as a traditional transfer

function, or as a set of poles and zeros. The system is designed with flexibility in mind.

It is fully expected that users of the Control System Plant Simulator will make simple, but

powerful enhancements. As such, a complete description of the system design and

implementation are required. This section provides this information. The overall system

architecture is described using a top down approach. This section provides details of the

implementation including class interaction diagrams and sequence diagrams. Finally, the

delivered product is described, along with comments about the difficulties encountered

and the compromises made to overcome them.

3.1 System Design

This section describes the design of the Control System Plant Simulator using a

top down approach.

3.1.1 Process Space Overview

 The Control System Plant Simulator is separated into three distinct process spaces

as shown in figure 8. This modular design provides for a great deal of the flexibility the

system provides for users. Should major adjustments be required to a portion of the

system, such as the pluggable user interface, only one process space must be altered. The

first process space is the User Interface. This is the process that users interact with. The

User Interface design allows the framework user to create user interfaces customized for

plant simulation. Individually developed User Interfaces do not even have to be

developed using the same programming language as the remainder of the system. The

22

second process space is the Win32 process. This process deals with configuration and

non-real-time interactions with the Windows operating system (such as file

management). It stores, configures, saves, and loads all configuration information until

the system is ready to begin simulation. The third and final process is the Computation

process. The Computation process is responsible simulating the configured plant, and for

reading and writing to the data acquisition device connected to the system. It is the

lowest level process, and is given its own process space to allow it to be launched on a

separate operating system (such as RTX
®
) or as a kernel level process. These processes

send commands and data between each other through interfaces implemented through

shared memory and named semaphores.

User Interface Process

Ui to Win32

Outgoing

Interface

Win32 to UI

Incoming

Interface

Win32 Process

UI to Win32

Incoming

Interface

Win32 to UI

Outgoing

Interface

Win32 to Comp

Outgoing

Interface

Comp to Win32

Incoming

Interface

Computation Process

Win32 to Comp

Incoming

Interface

Comp to Win32

Outgoing

Interface

Process

Boundary
Process

Boundary

Non-Real-

Time OS

Interface

Non-Real-

Time OS

Interface

Real-Time

OS

Interface

Real-Time

OS

Interface

Non-Real-Time OS

(Windows)
Real-Time OS (RTX®)

 Data

Acquisition

Device

CSPS Framework

Figure 10: System Diagram

23

3.1.1.1 User Interface Process

The User Interface process is the top level process. It is what the individual users

interact with directly. This process does not run in real time, and does not interfere with

the processing of the Computation Process. This process allows the user to initialize,

configure, start, and stop the simulations, and is designed for configurability. This is a

component of the CSPS, and will be launched as part of the CSPS start-up procedure, but

it is expected that individual framework users will design their own User Interface

processes. This gives framework users the ability to tailor their interface to the plant they

wish to simulate by adding plant specific details and animations to their interface. It is a

vital part of the CSPS simulation, but exists outside of the CSPS framework as users will

be making it themselves.

3.1.1.1.1 Responsibilities

The User Interface process is responsible for the following requirements. It is the

responsibility of the user interface designer to make sure that each of these requirements

is met in the user interfaces they design.

 User Interfaces must field all user commands and input.

 Format user input into structures meaningful to the Win32 process.

 Send properly formatted input and commands to the Win32 process.

 Inform the user of any relevant system information provided by the Win32

process. This includes but is not limited to error messages, informational

messages, the current plant configuration, the current port configuration, and

input or output values.

 May provide the user the ability to specify files that can be used for loading or

saving configurations, or for logging data.

 Send the command to terminate the simulator when the user shuts the User

Interface down.

24

3.1.1.1.2 Interchangeability

The User Interface process is designed to be interchangeable. Framework users

typically will want a user interface tailored to the plant being simulated. One developer

may wish to model the level of fluid in a tank and desires a user interface with a

specialized GUI displaying an animated tank with visually changing water levels. Some

developers may wish to allow users of their plant to modify the plant constants and will

provide entry windows in their user interface for new values. Others still may wish to

prevent any alterations and simply provide a „Start‟ and „Stop‟ button or text command.

To allow for the infinite range of possible interfaces, the user interface is launched as a

distinct application. Developers may write these user interface applications any way they

wish, provided they adhere to the protocol for inter-process communication between the

User Interface and the Win32 process. To facilitate this process, a user interface

dynamically linked library (DLL) is provided as part of the Control System Plant

Simulator suite of applications. The User Manual also provides specific instructions that

describe how to develop user interface programs to work with the framework.

3.1.1.1.3 Inter-process Communication

 The Win32 process must be informed which User Interface process to launch at

boot time. User interfaces communicate with the Win32 process through an interface

implemented with named semaphores and shared memory. This interface and the

protocol for its use are described in detail in section 3.2 of the User Manual, The

UiWinInterface API. Every user interface must make proper use of these defined

semaphores and shared memory locations to operate with the system as a whole. A

dynamically linked library is provided to help simplify this process. This library has

been exported for use with Microsoft Visual Basic applications as well as traditional

windows applications.

3.1.1.2 The Win32 Process

The Win32 process serves as the main entry point for the entire system. The

Win32 process is the first process launched, and is responsible for launching the other

25

two processes. All commands from the user interface are fielded by the Win32 process,

which then validates and executes them. It stores all configuration information before a

simulation starts, and manages the Computation process.

3.1.1.2.1 Responsibilities

The Win32 process is responsible for:

 Launching the User Interface and Computation processes.

 Converting plants provided by the user to state space notation for the

Computation Process.

 Storing plant and port configurations before a simulation is started.

 Validating plant and port configurations when the user attempts to start a

simulation.

 Configuring the Computation process with validated plant and port

configurations upon simulation start.

 All file input and output, including saving and loading configuration data.

 All logging, which must be done in a way that does not interfere with any other

process in the system.

 Manages updates to the user interface, including any messages or port value

updates.

3.1.1.2.2 Startup

Upon startup, the Win32 process launches and configures the Computation

process and the User Interface process. It establishes connections to and from each of the

processes, and initializes all system shared variables.

3.1.1.2.3 Logging

 The Win32 process manages three different optional logs. These logs are written

to files that the user may view upon simulation completion. Log messages may be

informational messages describing how the simulation is running, critical messages

26

indicating major errors, and IO messages indicating the current input and output of the

system. All log messages are forwarded to the UI process which can do with them what

it wants, but critical logs are always written to standard output as a minimum. IO logs

are written in comma delimited format, allowing them to be imported directly to database

programs like Microsoft Excel with no difficulty.

3.1.1.3 Computation Process

The Computation process handles all calculations needed to simulate a configured

plant. This process handles plant evaluation and input and output to physical hardware.

It consists of two main parts: the Plant and the Port Manager. The plant is responsible

for running the mathematical model of the plant. by repeatedly executing simulation

cycles. Simulation cycles start by fetching data from the data acquisition device. This

data is converted into plant engineering data values, and is used to calculate the next set

of outputs. These outputs are converted back to physical data and are provided to the

data acquisition device to be sent to the controller.

 The Port Manager handles reading input for the Plant, and writing output from

the plant to a connected Data Acquisition device. Both of these elements are configured

by the Win32 process which obtained the configuration information from the User

Interface process. It may also report changes in system state or data through the logging

system.

3.1.1.3.1 Responsibilities

The Computation process is responsible for:

 Performing the plant simulation.

 Converting continuous plants to discrete

 Managing physical Input and Output.

 Mapping physical Input and Output to the inputs and outputs of the specified

plant.

 Updating the Win32 process with status through update and log operations.

27

3.1.1.3.2 Physical Ports

 The Computation process manages the physical I/O through a data acquisition

device that is known at compile time. Should a data acquisition device be altered, a small

section of the Computation process will need to be ported. Due to the modular design of

the Computation process, the effort required to make this port is minimal. See User

Manual Section 4: Porting a New Data Acquisition Device for specifics on how to

develop for different data acquisition devices.

 Physical ports are read and written to at periodic intervals. The user may

configure these intervals individually for each physical port. This allows for data

acquisition boards that take long periods of time to update their ports. When a port is

read, the raw data from the acquisition board is read and stored to a cache. When the

plant needs input data, the data is fetched from this cache. When the plant has calculated

a new set of outputs, the output data is written back to the cache. When it is time for the

output to be refreshed, these cached output values are written to the data acquisition

device.

3.1.1.3.3 Pseudo Ports

 While the physical ports available on a workstation may not often change, the

plant simulated is expected to be changed frequently. Each plant will have different input

and output requirements. Some will use simple integer input, others will need access to

precise floating point input. Some will be Single Input Single Output (SISO) systems,

and others will be Multiple Input Multiple Output (MIMO) systems. In addition, a plant

defined for the Control System Plant Simulator should be able to be saved, and loaded on

another system running the Control System Plant Simulator without altering the plant

itself. To satisfy all of these requirements, the Control System Plant Simulator wraps

Physical Ports in Pseudo Port objects. Pseudo Ports are named objects, whose names

match perfectly with the inputs and outputs of a particular defined plant. Pseudo ports

must reference real physical ports to „connect‟ them to the inputs and outputs of the

defined plant. Pseudo ports are also responsible for reading or writing physical input

28

from the physical data cache, and for converting the input and output of the current data

acquisition device into engineering data meaningful to the plant as shown in figure 9.

Physical Port

Pseudo Port

Plant

Pseudo Port

Physical Port

Input From

Controller

Output To

Controller

Physical Data

Engineering Values

Physical Port Cache

Physical Data

Figure 11: PhysicalPort and PseudoPort Interaction

Pseudo Ports come in two distinct types: binary and analog. Binary pseudo ports

may be any size up to the maximum size of the physical port they wrap. Several binary

pseudo ports may map to the same physical port provided the physical port is large

enough (for example, a 32 bit physical port can be used as two 16 bit binary pseudo

ports). Analog ports, on the other hand, have a one to one relationship with their physical

ports. Analog pseudo ports convert physical data values to engineering data values

through a simple linear scaling procedure that converts the largest possible engineering

29

value acceptable to the plant to the highest voltage that may be read from the physical

port and the smallest possible engineering value to the lowest voltage. For example, a

physical analog port may only be able to provide voltages between 0 and 5 volts, but this

value represents a pressure measured in 50 to 200 PSI. Analog pseudo ports perform this

conversion.

3.1.1.4 Interfaces

The three main system processes must communicate between each other to pass

configuration, update, informational, and control messages. An incoming and outgoing

interface is defined for each process. These interfaces are the means by which the

processes communicate.

 These interfaces are implemented through the use of shared memory and named

semaphores. Figure 10 shows a generic interaction across process boundaries through

these interfaces. Incoming interfaces run a separate thread of execution that block on a

named semaphore (The Interface Semaphore). Action is initiated by sending commands

to the connected outgoing interface that cause the semaphore to be unlocked. All

outgoing values must be set in shared memory before unlocking this semaphore. These

include values that indicate which operation has been called, as well as provide any

parameters necessary for execution of the requested operation. The thread is then

blocked on another named semaphore (The Return Semaphore).

 When the Interface Semaphore is unlocked, the incoming interface thread

unblocks and determines what operation was called by checking values in shared

memory. Once the specific operation has been determined, the incoming interface thread

copies any relevant parameters out of shared memory. All input or output parameters

must be copied to or from memory. With all the necessary data, the incoming interface

thread invokes the proper function on one of the objects in its process space. Once this

function call returns, the incoming interface thread copies return data back to shared

memory and unlocks the Return Semaphore indicating that the requested operation was

completed. The thread that blocked when it made a call on the outgoing interface

30

unblocks and copies this data out of shared memory. The data is then provided to the

calling process through a more traditional return value.

Figure 12: General Inter-Process Communication

Unlocking the Return

Semaphore unblocks

the calling thread

Initiating

Process

Outgoing

Interface

Shared

Memory

Interface

Semaphore

Incoming

Interface

Target ProcessReturn

Semaphore

Call Operation

Set Operation identifier

Set Parameter Values

Unblock

Copy Operation Identifier

Determine Operation

Copy Parameter Values

Call Operation (with params)

Return Values

Set Return Values

Copy Return Values

Return Values

Unlock()

Lock()

Lock()

Unlock()

Unblock()

Lock()

Unlocking the Interface

Semaphore allows the

Incoming Interface to

run again

31

For Example, the Computation Kernel has an incoming interface that allows the

Win32 process to add pseudo ports to the configuration. The Win32 process calls an

operation on the Outgoing Interface passing to it the pseudo port information as a

parameter. This data is copied to shared memory, along with an identifier indicating that

the „AddPort‟ operation has been called. The interface semaphore is unlocked, and the

caller blocks on the return semaphore. The Incoming interface thread unblocks and reads

the identifier out of shared memory. It determines that the „AddPort‟ operation has been

requested and copies the parameters out of shared memory. It then calls the AddPort

operation on the PortManager object, passing in the copied parameters. When the call

returns, the return value is copied into shared memory and the return semaphore is

unlocked. The incoming interface thread blocks on the interface semaphore again, while

the calling thread in the original process space unblocks. It copies the return value out of

shared memory and returns it to the caller in the Win32 process.

3.1.1.4.1 Multithreading Considerations

Incoming Interfaces themselves are thread safe in that only the thread created by

the incoming interface‟s inheritance of class Thread accesses the private functions that

access shared memory. This thread is blocked by the interface semaphore until an

operation is ready. It is the responsibility of the outgoing interface connected to this

incoming interface to make sure that the semaphore is not unblocked when memory is

vulnerable.

While the incoming interface executes a requested operation, the initiating

outgoing interface is blocked on the reply semaphore. It is the responsibility of the

incoming interface to unlock the reply semaphore once execution is complete, even in the

case of a failure. They access shared memory that must be protected against multiple

access and modification.

There is one unit of shared memory that a pair of connected outgoing and

incoming interfaces access. This shared memory holds parameters, return values, and

data indicating which function has been called. Access to this shared memory MUST be

limited to one and only one thread of execution. No operation may be called until the

previous operation has completed. This means that it is the responsibility of the

32

Outgoing Interface to hold off any calling process until previous memory accesses have

completed. This is done through the use of a protection semaphore. All Outgoing

Interfaces are required to lock the protection semaphore upon function entry, and unlock

it when the return value has been set and shared memory access is no longer needed.

In addition, all outgoing interfaces must wait for their connected incoming

interface to complete their operations before unlocking the protection semaphore, even

when there is no return value for the operation invoked. This is because the incoming

interface relies on shared memory to receive input parameters and an indication of which

function has been called. If an outgoing interface unlocked the protection semaphore, it

is possible another operation could be called and would change shared memory to

indicate a completely different operation. To prevent this issue, all outgoing interfaces

are required to block on the reply semaphore until the connected incoming interface

releases it.

3.1.1.5 Threading Structure

This section describes the threads that run within the CSPS.

3.1.1.5.1 User Interface

The threading structure of the user interface is completely up to the designer of

the interface, but at least one additional interface thread will always be present. The User

Interface has an additional thread of execution that handles incoming operation requests.

It blocks until a request is made, unblocks to handle it, and blocks again once the request

has been completed.

3.1.1.5.2 Win32 Process

The Win32 process one main thread of execution that is responsible for creating

all of the objects within the system. It configures the objects and launches the process

spaces during the initial boot. Once the system has been established, this thread blocks

until the User Interface reports that the user has requested the system to shut down, at

which time it handles tearing down all of the objects it created.

33

Beyond the main thread, the Win32 process consists of two incoming interface

threads, one for handling requests from the User interface, and one for handling requests

from the Computation Kernel. These threads block until an operation is requested,

handle any requested operations, and then wait for more.

3.1.1.5.3 Computation Kernel

Like the Win32 process, the Computation Kernel has a main thread responsible

for establishing all of the objects upon startup. It also has an incoming interface thread

that handles operation requests from the Win32 process.

In addition to the startup and communication threads, the Computation Kernel has

a thread dedicated to the Plant, the Plant Watchdog, and the Port Cache. The Plant thread

handles the calculations required during simulation. It is manages the calculation portion

of a Simulation Cycle. The Plant Watchdog thread monitors the plant and makes sure

that all deadlines are met. The Port Cache thread handles reading from and writing to the

physical data acquisition device.

3.1.2 Detailed Design

The CSPS Framework is a complex set of components designed for flexibility,

alteration, and customization. To facilitate future development of the framework, this

section has been written to provide the detailed design for the system as a whole. This

includes the overall design for the operating system abstraction, each process space, and

the classes that compose the processes.

34

3.1.2.1 Operating System Abstraction

Portability of the system is of prime importance to the CSPS Framework. A full

port of the entire system is provided for RTX
®
 in this distribution, and others are likely to

be required in the future. The CSPS Framework requires the following from a target

operating system:

 Support for named semaphores across process spaces. The target OS must

provide semaphores that threads may block upon in one process space, and be

signaled by another.

 Support for shared memory. The target OS must provide some shared memory or

shared variable support that allows two process spaces to set, access, and alter the

same variable.

 Support for threads.

 Sleep or pause commands. The target OS must provide the ability to stop the

execution of a thread for a specified period of time.

In order to provide for a highly portable system, several classes were designed to

provide an abstraction layer between the operating system and the Control System Plant

Simulator. These classes may have to be ported should one or more of the system

processes be moved to another operating system.

3.1.2.1.1 Duality of OS Abstraction Classes

Each of the Operating System Abstraction classes provides two different

Operating System implementations. The first is a primary interface that is always

expected to be implemented. The second is an optional interface for the Computation

Kernel, should the Computation Kernel use an interface other than the primary one. The

User Interface and Win32 process are expected to run on the same operating system,

referred to as the „Primary OS‟, but the Computation Kernel may run on a separate

operating system extension, referred to as the „Secondary OS‟, such as RTX
®
. By setting

some precompiler definitions in the LocalDefinitions.h file, a developer may turn

secondary code on or off. When porting from one system to another, the Operating

35

System Abstraction classes will have to change to reflect the new operating system. If

only the operating system upon which the Computation Kernel launches is changing,

only the secondary interface code will have to change.

3.1.2.1.2 Class Thread
The thread class abstracts operating system threads from the Control System Plant

Simulator suite of applications. This class is responsible for creating, running, and

managing a thread of execution.

Figure 13: Class Thread

3.1.2.1.2.1 Responsibilities

 The Thread class is responsible for managing all operating system specific

operations required to start and run a thread of execution. It must manage the priority of

the thread it created, and is responsible for releasing any resources dedicated to the thread

upon destruction.

3.1.2.1.2.2 Usage

 The Thread class is an abstract parent class. Other classes in the system that have

operations that are required to execute within their own threads of execution inherit from

class Thread and overwrite the virtual Loop() operation. Class Thread insures that the

Loop() operation will be called by a new operating system thread of execution. Should

Loop() return, the thread will complete and terminate.

3.1.2.1.3 Class InterfaceSemaphore

The Interface Semaphore class wraps traditional operating system semaphores. It

must provide access to the semaphores in such a way that the same semaphore may be

36

accessed from separate process spaces at the same time. Typically this is handled as a

named semaphore. When the semaphore is opened with a name that already exists in

another process space, the existing semaphore is provided.

Figure 14: Class InterfaceSemaphore

3.1.2.1.3.1 Responsibilities

Interface Semaphore objects are required to be available across process space

boundaries. If an Interface Semaphore is opened in one process with the same name as

an Interface Semaphore in another, instead of creating a new Interface Semaphore, a

handle to the original semaphore must be returned. Interface Semaphores are counting

semaphores as opposed to binary. They decrement a count every time Lock() is called

until that count reaches zero. Calling Lock() on an Interface Semaphore with count 0

causes the system to block.

3.1.2.1.3.2 Usage

 The Interface Semaphore object is a simple named semaphore. It is constructed

with a name and a maximum count. Currently, the CSPS framework utilizes semaphores

that have a maximum count of 1, but the InterfaceSemaphore class allows for greater

maximum counts for future extensions. Each time Lock is called on any of the interface

semaphores constructed with the same name, the count is decremented. When lock is

called on a semaphore that has reached zero, the calling process is blocked. Unlock adds

resources to this count.

37

3.1.2.1.4 Class SharedMemoryInterface

The Control System Plant Simulator requires the use of Shared Memory in order

to send information between process spaces. Shared Memory is memory that more than

one application can access. The SharedMemoryInterface class manages the creation and

cleanup of memory shared between process spaces.

Figure 15: Class SharedMemoryInterface

3.1.2.1.4.1 Responsibilities

The SharedMemoryInterface is responsible for creating memory that can be

accessed between different process spaces. When a SharedMemoryInterface is

constructed in one process space with the same name as another SharedMemoryInterface

in another process space, it is the responsibility of this class to make sure that the

memory created is the same between the two. The class is also responsible for making

sure that the memory is properly released when it is done with it. There is no process that

is designated as one responsible for the creation of shared memory. All

SharedMemoryInterface objects are constructed the same way. It is the responsibility of

this class upon construction to look for other blocks of shared memory that were created

with the same name. If shared memory exists, the newly constructed

SharedMemoryInterface deals with the existing memory. If it does not, the

SharedMemoryInterface creates a new block of shared memory.

3.1.2.1.4.2 Usage

Users of the SharedMemoryInterface create or open existing shared memory by

indicating how much memory to allocate, and what name should be associated with that

38

memory. If shared memory exists with the given name, a pointer to the original memory

will be returned, otherwise new memory will be allocated and tagged with the provided

shared memory name.

3.1.2.1.5 Class FileInterface

The FileInterface class handles all file input and output operations. It is

simplified from traditional Operating System file IO in that only a few select items can be

written to or read from files, all values are written as text files, one complete line at a

time. These files are input or output only.

Figure 16: Class FileInterface

3.1.2.1.5.1 Responsibilities

FileInterface is responsible for opening files for read or write access, and for

providing a common set of functions that can be called to read or write to these files. It

wraps the file input/output API provided by the particular operating system it abstracts.

3.1.2.1.5.2 Usage

 Files may be opened for read or write access only. Any time a file is opened for

write access, the file is overwritten. Data is read or written one line at a time. When

writing data, only the primitive types „integer‟ and „float‟ are supported. This is done to

intentionally limit the capability of the Control System Plant Simulator to exactly what

was needed.

39

3.1.2.2 Interface Parent Classes

The interface parent classes are abstract classes that provide the basic

functionality required by the individual interfaces. . Interfaces are the unidirectional

means of communication between process boundaries. On one side of the boundary, an

OutgoingInterface allows a process to make a request on another process. On the other

side, an IncomingInterface allows a process to field these requests, process them, and

return any results. Each process boundary has a pair of these interfaces: one for each

direction of communication.

User Interface Process

Ui to Win32

Outgoing

Interface

Win32 to UI

Incoming

Interface

Win32 Process

UI to Win32

Incoming

Interface

Win32 to UI

Outgoing

Interface

Win32 to Comp

Outgoing

Interface

Comp to Win32

Incoming

Interface

Computation Process

Win32 to Comp

Incoming

Interface

Comp to Win32

Outgoing

Interface

Process

Boundary
Process

Boundary

Figure 17: Interfaces between Process Boundaries

3.1.2.2.1 IncomingInterface

The IncomingInterface class is the parent class for all incoming interfaces.

Incoming interfaces run their own thread of execution, which waits for operations to be

40

called by Outgoing Interfaces in other process spaces. It is an abstract class that must be

overridden.

Figure 18: Class IncomingInterface

3.1.2.2.1.1 Responsibilities

 The IncomingInterface class is responsible for managing the incoming side of an

inter-process interface. It contains a semaphore for the interface, and another for return

values, opening the local reference to them upon construction. It initializes an additional

thread of execution that is always ready to field incoming operation requests. When this

thread is unblocked by an Outgoing Interface, it forwards the request to child classes that

are responsible for determining which operation was requested and how best to fulfill the

operation request.

3.1.2.2.1.2 Usage

The IncomingInterface class inherits from class thread. It intiates a new thread of

execution that blocks on the Interface Semaphore opened at construction time. When an

Outgoing Interface unlocks, the thread is unblocked. The thread then calls

SubclassHandleEvent which is a protected operation that must be overwritten by

41

inheriting child classes. In this operation, the child classes will determine what operation

was requested by the outgoing interface, and how best to service that request.

3.1.2.2.2 OutgoingInterface

The OutgoingInterface class is the parent class for all interfaces that make

operation calls on other processes. It is an abstract class that must be overridden and

provides no implementation on its own.

Figure 19: Class Outgoing Interface

3.1.2.2.2.1 Responsibilities

The OutgoingInterface class is responsible for managing the outgoing side of an

inter-process interface. It handles the interface semaphore, and the return semaphore,

opening the local reference to them upon construction, as well as shared memory between

this Outgoing interface and a connected incoming interface.

3.1.2.2.2.2 Usage

 The OutgoingInterface simply provides a guaranteed platform that inheriting

OutgoingInterfaces can rely upon. Classes that inherit from OutgoingInterface are

guaranteed to have interface events, semaphores, and shared memory.

42

3.1.2.3 User Interface

The User Interface process is unique in that little „official‟ implementation is

provided. Individual developers are expected to use the provided classes or dynamically

linked library to build their own customized user interfaces. Two complete user

interfaces are provided and detailed in The User Manual, but these are included as

examples to help users understand how to use the provided classes.

The User Interface process is launched by the Win32 process, and is the front end

with which users interact. There are no constraints on what the user interface provides,

and it may be written in any programming language provided that language has an

implementation for shared memory and named semaphores. It allows the user to

command, control, and configure the Control System Plant Simulator. User interface

developers may limit the functionality they provide to their users, but at minimum this

interface must make a call to configure the plant and ports, and a start execution call.

Developers of a user interface may use the incoming and outgoing interface

classes, or the dll that abstracts them.

3.1.2.3.1 WinToUiIncomingInterface

The WinToUiIncomingInterface handles all incoming function calls from the

Win32 process. These incoming calls are informational in nature, and as such, their use

is not required for operation.

43

Figure 20: Class WinToUiIncomingInterface

3.1.2.3.1.1 Responsiblities

The WinToUiIncomingInterface is responsible for handling the incoming

message and I/O update function calls from the Win32 process. It is also responsible for

buffering incoming messages and updates. The User Interface itself may check these

buffers as necessary.

3.1.2.3.1.2 Buffered Messages

Unlike other incoming interfaces, the WinToUiIncomingInterface cannot simply

forward the requested function call to a specific object. No requirement is placed upon

individually developed user interfaces to provide operations to handle these function

calls. Callback operations are insufficient as well because some programming languages,

such as Visual Basic 6, do not allow exterior threads to access their data members. The

WinToUiIncomingInterface operates on its own Windows launched thread that cannot

access Visual Basic callback operations.

As a result, an additional responsibility has been placed on the

WinToUiIncomingInterface to buffer all incoming information. Informational messages

and critical messages are stored in individual circular buffers. User Interfaces are

44

required to check to see that data exists in the buffer by calling the HasInfoMsg and

HasCritMsg before popping messages out of the buffer. The oldest messages are always

returned first. If more data is fed into the buffer before the User Interface removes it, the

oldest messages are discarded completely. Input / Output data is not written to a buffer.

Instead only the most recent Input / Output data is stored.

45

3.1.2.3.2 UiToWinOutgoingInterface

The UiToWinOutgoingInterface provides a set of operations that the user

interface may call when it wants to invoke a function on the Control System Plant

Simulator.

Figure 21: Class UiToWinOutgoingInterface

46

3.1.2.3.2.1 Responsiblities

The UiToWinOutgoingInterface is responsible for providing a complete set of

functions for the user interface. Each of the provided operations block the calling thread

from the user interface until the operation returns from the Win32 process. The

UiToWInOutgoingInterface must also protect against multiple concurrent accesses to any

of these functions. Only one may be called at a time.

3.1.2.3.3 UiWinInterface Dynamically Linked Library

The UiWinInterface Dynamically Linked Library instantiates a

UiToWinOutgoingInterface a WinToUiIncomingInterface, and provides a simplified set

of operations to access the functions provided by those interfaces. It is designed to be

fully compatible with visual basic for quick and simple graphical user interface design.

For detailed information about the UiWinInterface API and every function provided, see

section 3.2 of the User‟s Manual: The UiWinInterfac API.

47

3.1.2.4 Win32 Process

 The Win32 process is the main program in the Control System Plant Simulator. It

is the first process launched by the user, and is responsible for launching each of the other

processes in turn. Note that while the name implies complete reliance on Win32, it is

possible to port the Win32 process to other operating systems by porting the OS

Abstraction layer to the target OS. The Win32 process fields commands and

configuration information from the user interface, and is responsible for saving and

loading plant configurations and pseudo port mappings. Plant configurations and pseudo

port mapping information are stored in data managers until the system is prompted to

begin execution. At that time, the Win32 process verifies that the configurations are

compatible, sends the configuration down to the Computation Kernel, and commands it

to begin execution. The Win32 process consists of a number of managers, each of which

is responsible for a different aspect of the system.

WinToUiOutgoingInterface

FileManager

CompToWinIncomingInterface

WinToCompOutgoingInterface

LogManager

PortConfigurationManager

SystemManagement

PlantConfigurationManager

UIToWinIncomingInterface

Figure 22: Win32 Process Diagram

48

 The Win32 process has two interfaces: the interface to and from the User

Interface, and the interface to and from the Computation process. The remainder of the

process consists of four managers: The PortConfigurationManager, the

PlantConfigurationManager, the LogManager, and the FileManager. The

SystemManagement class ties all of the managers together.

3.1.2.4.1 UiToWinIncomingInterface Class

The UiToWinIncomingInterface class fields commands from the User Interface

process. It determines what operations have been requested, copies relevant data out of

shared memory, and makes the appropriate calls on the Win32 manager classes.

Figure 23: Class UiToWinIncomingInterface

3.1.2.4.1.1 Responsibilities

 As a class that inherits from IncomingInterface, The UiToWinIncomingInterface

is responsible for overriding the HandleEvent operation by parsing out which operation

has been requested, and performing the appropriate actions to handle the operation. Once

the appropriate manager has processed the operation request, the

UiToWinIncomingInterface is responsible for making sure any return values are copied

back into shared memory before releasing the semaphore that the outgoing interface that

started this operation is waiting on.

49

3.1.2.4.1.2 Framework Start-Up

Upon framework start-up, the Win32 process spawns the user interface, but has

no way to know when the user interface has actually started, established its shared

interface, and is ready to receive function calls from the WinToUiOutgoingInterface. To

handle this problem, in addition to all of the operations that a user may initiate through

the interface, the UiToWinIncomingInterface must also be prepared to receive a function

request from the user interface that simply indicates that the UI is active and ready to

receive function calls.

3.1.2.4.2 CompToWinIncomingInterface Class

 The CompToWinIncomingInterface class handles commands from the

Computation process and makes the appropriate calls on the SystemManagement class to

execute the requested operations.

Figure 24: Class CompToWinIncomingInterface

3.1.2.4.2.1 Responsibilities

As a child class of IncomingInterface, the CompToWinIncomingInterface class is

responsible for implementing the HandleEvent operation by determining which operation

50

has been requested, copying relevant data out of shared memory, and invoking the

appropriate function call on the SystemManagement class. Once that call has returned,

any return values are placed in Shared Memory. Once the call has returned, the

CompToWinIncomingInterface is responsible for making sure any return values are

copied back into shared memory before unlocking the semaphore associated with the

incoming request.

3.1.2.4.3 WinToUiOutgoingInterface Class

The WinToUiOutgoingInterface class sends system updates up to the User

Interface‟s incoming interface. The User Interface may choose to listen to or ignore these

operation requests as their completion is not critical to system execution.

Figure 25: Class WinToUiOutgoingInterface

3.1.2.4.3.1 Responsibilities

The WinToUiOutgoingInterface is responsible for updating the user interface

with the current status of the simulation. Informational and critical messages are passed

to the user interface, which may decide what to do with them. During simulation, the

status of the ports as seen by the plant is provided through the UpdateIO operation to

allow the user interface to display the current state.

51

3.1.2.4.3.2 Framework Start-up

Upon framework start-up, the WinToUiOutgoingInterface cannot know if a user

interface has been launched and is ready to receive incoming commands. For that reason,

no outgoing operations may be enacted until the user interface reports that it is ready to

receive function calls. The WinToUiOutgoingInterface is responsible for ignoring all

function requests until SetUiConnected is called, indicating that a user interface is

available. It is at this point that function calls can be made on the User Interface.

3.1.2.4.4 WinToCompOutgoingInterface Class

The WinToCompOutgoingInterface class provides an interface for the Win32

process to the Computation process.

Figure 26: Class WinToCompOutgoingInterface

52

3.1.2.4.4.1 Responsibilities

The WinToCompOutgoingInterface is responsible for converting the input

operations into function calls to be invoked on the Computation Process. It copies the

input parameters to shared memory and blocks. It will remain blocked until the

computation kernel incoming interface completes the operation and unblocks the

interface semaphore. At that point, the WinToCompOutgoingInterface is responsible for

copying the return value out of shared memory and returning it to the calling process.

The operations provided by this interface allow the Win32 process to start and stop

execution, configure the Computation Kernel with plant or port information, and shut

down the program completely.

3.1.2.4.5 PortConfigurationManager Class

The PortConfigurationManager maintains the port configuration in the Win32

process. The port mapping stored by the port configuration manager does not need to be

complete or valid until the start of simulation; at this stage, the user may alter and update

the values. The UiToWinIncomingInterface interfaces directly with the

PortConfigurationManager to set and review the current PseudoPort configuration. The

SystemManager interfaces with the PortConfigurationManager to access the port

mapping for save and load operations. The port mapping is fetched from the

PortConfigurationManager by the SystemManager to configure the Computation Kernel

when prompted to start simulation execution.

Figure 27: Class PortConfigurationManager

53

3.1.2.4.5.1 Responsibilities

The PortConfigurationManager is responsible for maintaining the Pseudo Port

mapping. It provides a repository for all pseudo ports currently configured. Ports are

added, removed, and retrieved by name.

3.1.2.4.6 PlantConfigurationManager Class

The PlantConfigurationManager maintains the plant configuration in the Win32

process. The UiToWinIncomingInterface interfaces directly with the

PlantConfigurationManager to set and review the plant configuration. The

SystemManager interfaces with the PlantConfigurationManager to access the plant for

save and load operations. The plant is fetched from the PlantConfigurationManager by

the SystemManagement class when it is needed to configure the Computation Kernel.

Figure 28: PlantConfigurationManager

3.1.2.4.6.1 Responsibilities

The PlantConfigurationManager is responsible for maintaining the plant in the

Win32 process. Plants may be specified as a set of state space matrices, as transfer

functions, a matrix of transfer functions, or as a set of nonlinear equations. The transfer

54

functions themselves may be specified in terms of the coefficients of the numerator and

denominator, or as a set of zeros, poles, and the gain associated with them. The system

only stores plants as systems of state space equations, and the Computation Kernel can

only accept state space equations as well. For this reason, the

PlantConfigurationManager has the additional responsibility of converting transfer

functions to state space equations for storage. The PlantConfigurationManager must

prevent invalid plants from being configured. This includes making sure that all matrices

are formatted properly, that complex poles and zeros are delivered in conjugate pairs, and

that input and output names are not misplaced in the plant specifications. It also must

maintain any initial conditions associated with the plant

3.1.2.4.7 LogManager Class

The LogManager handles all logging operations. This operation is governed by

the SystemManagement class that passes log information to the user interface before

sending it down to the LogManager.

Figure 29: Class LogManager

55

3.1.2.4.7.1 Responsibilities

The LogManager is responsible for handling all logging requests. This involves

managing each of the individual FileInterfaces involved for logging, and formatting the

data received for logs. IO logs, for example, are written as comma delimited files, and

require formatting to be performed on every entry.

3.1.2.4.8 FileManager Class

The FileManager class handles all file I/O with the exception of the logs. For the

purposes of organization, the FileManager is split into two different file managers; one

for the plant file I/O, and one for the port file I/O.

Figure 30: Class FileManager

56

3.1.2.4.8.1 Responsibilities

The FileManager is responsible for saving and loading the plant and the pseudo

port mapping. This is done by forwarding the incoming call to one of two different sub-

file managers. Each of the sub-file managers are responsible for saving and loading to

files in predefined user readable format. See sections 2.2.5 and 2.3.4 of the User Manual

for specifics on the format of Plant and Pseudo Port configuration files. This allows users

to enter their own plants and port mappings through any basic text editor.

3.1.2.4.9 SystemManagement Class

The SystemManagement class handles all interactions between the various

managers that make up the Win32 process. The UiToWinIncomingInterface and

CompToWinIncomingInterface communicate directly with the SystemManagement to

handle all external requests that involve manager interaction.

57

3.1.2.4.9.1 Responsibilities

The SystemManagement class is the main class of the Win32 process. The

majority of all incoming operations are initially sent through the SystemManagement

class which utilizes the services provided by the individual managers to fulfill each

request. It is responsible for verifying the current configuration, sending that

configuration down to the Computation process, and for starting and stopping the actual

simulation. During load operations it retrieves information from the File Manager to set

the data in the PlantConfigurationManager and PortConfigurationManager. It also

collects data from PlantConfigurationManager and PortConfigurationManager to send to

the FileManager for saving information.

WinToUiOutgoingInterface WinToCompOutgoingInterface

SystemManagement

StartExecution() : bool
StopExecution() : bool
IsReadyForExecution() : bool
UpdateIO(inputs : PortNameAndData[], numInputs : int, outputs : PortNameAndData[], numOutputs : int) : bool
LoadPortsFromFile(fileName : const char*) : bool
SavePortsToFile(fileName : const char*) : bool
LoadPlantFromFile(fileName : const char*) : bool
SavePlantToFile(fileName : const char*) : bool
ShutDown()
EnableIOLogging(fileName : const char*) : bool
PostInfoMessage(message : const char*)
StopIOLogging() : bool
EnableCriticalLogging(fileName : const char*) : bool
PostCriticalMessage(message : const char*)
StopCriticalLogging() : bool
EnableInfoLogging(fileName : const char*) : bool
StopInfoLogging() : bool
RequestIOUpdate() : bool
SetDiscretizationMethod(method : DiscretizingMethod) : bool
SetIOUpdateMethod(updateMethod : IOUpdateMethod) : bool
GetPhysicalInfo() : PhysicalPortsDescriptor
SchedulePortActivity(portName : const char*, period : int) : bool
ValidatePlantAndPorts() : ValidationResults

PlantConfigurationManager FileManager LogManager

Figure 31: Class SystemManagement

58

3.1.2.5 Computation Kernel Process

The Computation Kernel process is launched by the Win32 process, and is

responsible for handling the actual simulation of the configured plant. It is responsible

for managing the physical IO, and as such, some small porting effort may be required for

different data acquisition boards. It accepts a plant configuration from the Win32 process

as a set of state space equations, discretizes the plant if necessary, and executes

simulation cycles. Discretization is performed in this process instead of in the Win32

process to move the discretization of plants one level further away from the end user.

When a user provides a continuous plant, they should not see their plant modified in

significant ways, especially when saving it to, or loading it from a file. It may become

difficult for a user understand that the plant they loaded really is the discrete equivalent

of what they intended to load. In addition, it is a requirement of the simulation itself that

the plant be discretized. The plant will be kept in its initial state as much as possible until

the component that needs it to be changed encounters it.

59

Figure 32: ComputationKernel Process

Access to physical data is provided by physical ports that are launched statically

by the PhysicalPortCache. The PhysicalPortCache caches data that is to be written to, or

has been read from physical ports. PseudoPorts map the physical ports to Plant inputs and

outputs, and convert physical data to EngineeringValues that are meaningful to the plant.

Configurations and commands from the Win32 process are fielded by the

WinToCompIncomingInterface and are forwarded to one of the two major components of

the Computation Kernel; The Plant, or the Port Manager. The Plant handles configuring

and discretizing the plant provided. When it comes time to run the simulation, the Plant

is responsible for taking inputs and using them to evaluate the plant at periodic intervals

on its own thread of execution. At this stage, all values are stored as engineering values,

or in engineering value matrices. The PlantWatchdog monitors the plant to make sure

that updates are performed within a specified period of time. Should the updates miss

their deadlines, the PlantWatchdog will send a critical message to the Win32 process.

Thread

BinaryPseudoPortAnalogPseudoPort
PhysicalPort

EngineeringValue

PseudoPort

CompToWinOutgoingInterface

WinToCompIncomingInterface

PortManager

PlantWatchdog
Plant

EngineeringValueMatrix

PhysicalPortCache

Thread

60

The Port Manager handles the physical ports and maintains the configured pseudo port

mapping.

3.1.2.5.1 WinToCompIncomingInterface Class

The WinToCompIncomingInterface provides the means by which the Win32

process configures and commands the plant, and sends port related configuration

information down to the port manager.

Figure 33: Class WinToCompInterface

3.1.2.5.1.1 Responsibilities

The WinToCompIncomingInterface is responsible for determining which

operation has been requested by the Win32 process, and executing that operation on

either the plant or the port manager. It is also responsible for unlocking the return

semaphore that the Win32 process waits on to indicate that the operation is complete.

3.1.2.5.2 CompToWinOutogingInterface Class

The CompToWinOutgoingInterface provides the means by which the

Computation Kernel reports status back to the Win32 process. These messages are not

61

vital to operation in that they do not affect the simulation themselves. They do, however

report information that may be vital to the user, and are important to keep the user

informed of the status of the simulation.

Figure 34: Class CompToWinOutgoingInterface

3.1.2.5.2.1 Responsibilities

The CompToWinOutgoingInterface is responsible for providing a means by

which the Computation Kernel can report data updates and informational or critical

messages back to the Win32 process. It must block the Computation Kernel until the

Win32 process is done with the data. For that reason, only critical failures should be

reported during simulation execution.

3.1.2.5.3 EngineeringValue Class

The EngineeringValue class represents values that are meaningful to the plant.

All plant calculations are performed on EngineeringValue objects. This allows future

implementations to change how the plant performs its calculations. Fast floating point

arithmetic through the use of integers is a candidate for such improvements.

62

Figure 35: Class EngineeringValue

Note: Not shown: Full suite of operator functions.

3.1.2.5.3.1 Responsibilities

EngineeringValue is responsible for providing a wrapper for a floating point

value, as all plant operations require floating point arithmetic. The EngineeringValue

class provides an abstraction that allows arithmetic to be redefined in order to increase

efficiency.

3.1.2.5.4 EngineeringValueMatrix Class

The majority of all computations required to evaluate a plant are performed as

matrix operations. The EngineeringValueMatrix class is a matrix of engineering values,

and provides functions to perform the required matrix operations on its data members.

63

Figure 36: Class EngineeringValueMatrix

Note: Not shown: Full suite of operator functions.

3.1.2.5.4.1 Responsibilities

The EngineeringValueMatrix class provides a set of basic matrix operations,

including matrix inversion, calculating the determinant of the matrix, and basic arithmetic

operations. This simplifies the requirements imposed on the plant, and provides for a

much cleaner implementation.

3.1.2.5.5 PhysicalPort Class

The PhysicalPort class represents an interface available on the connected Data

Acquisition device. Raw physical data is read from or written to physical ports.

Figure 37: Class PhysicalPort

64

3.1.2.5.5.1 Responsibilities

The PhysicalPort class is an abstract class from which specific physical ports must

inherit. Inheriting classes are required to provide an implementation for the Read and

Write value operations that handle physical IO for a specific interface on the attached

data acquisition device. New inheriting classes will have to be written for different data

acquisition devices. See Section 4 of the User Manual for information about how to

update the Control System Plant Simulator for new data acquisition devices.

3.1.2.5.6 PhysicalPortCache Class

The PhysicalPortCache owns all of the PhysicalPorts in the system, constructing

them at launch. It manages a cache of data that has either been read from a physical port,

or will be written to a physical port shortly. The values provided to the plant come from

this cache, and not the ports themselves.

65

Figure 38: Class PhysicalPortCache

3.1.2.5.6.1 Responsibilities

The PhysicalPortCache is responsible for maintaining a cache of all physical

values, and for updating the PhysicalPorts independently from the execution of the plant.

When the simulation is running and the plant is being evaluated, reading from or writing

to physical ports must not block the thread of execution that is evaluating the plant.

Instead, the PhysicalPortCache has its own thread of execution. This thread will read

data from the plants and store it in a cache. Accessing data from this cache is both fast

and deterministic. When the plant has computed data to be output to the physical ports

that data is stored in the cache instead. These cached values will be written to the

physical ports at periodic schedulable intervals.

66

3.1.2.5.6.2 Update Schedule

Not all physical IO is performed at the same rate. Some physical interfaces may

update much faster than others. Some may tie up considerable system resources,

preventing or limiting access to other physical ports. For this reason, the Control System

Plant Simulator allows the user to determine exactly how much time will pass between

updates for each individual port. For example, an analog port that is known to take some

time may be updated every 100 milliseconds, while a simple digital port may be updated

every 20. Note that no update schedule should be faster than the plant cycle interval.

These update schedules are treated the same for input or output ports. When it comes

time to update a particular port, either a read or a write will be performed on the physical

port depending on the port‟s configured direction.

3.1.2.5.6.3 Inheriting Implementations

The PhysicalPortCache is an abstract class that must be implemented by

inheriting subclasses. This is because it manages all of the physical ports in the system,

and is responsible for populating itself with these physical ports at framework start-up.

Physical ports themselves are data acquisition device specific, as is the

PhysicalPortCache. A new physical port cache must be written for each data acquisition

device, but the only operation that needs to be implemented is the PopulatePortCache

operation. All major functionality is handled by the parent.

3.1.2.5.7 PseudoPort Class

The PseudoPort class provides the connection between the user defined plant and

the physical data acquisition unit. Inputs and outputs of the plant must be mapped to data

that enters the system through the data acquisition unit. PseudoPorts indicate which plant

inputs are provided data from which physical inputs, and which plant outputs provide

data to which physical outputs. They also determine how that data must be formatted

into meaningful engineering value data.

67

Figure 39: Class PseudoPort

3.1.2.5.7.1 Responsibilities

The PseudoPort is responsible for converting raw physical data read from a data

acquisition device into Engineering values that can be used by the plant, and for changing

engineering values provided by the plant back into raw physical data to be sent to the data

acquisition device output ports. This conversion is done intelligently, in that it is only

performed when a value has been changed. Neither incoming physical data values nor

outgoing engineering value data are converted when the value has not changed. When

the plant needs data, it requests an evaluation from all input pseudo ports. Each

PseudoPort will then retrieve data from the physical port cache. They will convert the

data if the value has changed from the previously converted one, or use a saved

conversion of the previous value if it has not. These converted values are then provided

to the plant as a set of inputs. When the plant has calculated a set of outputs, these are

sent to the output PseudoPorts as EngineeringValues. If the EngineeringValues are

different from previously provided EngineeringValues the PseudoPorts will convert them

to physical data values and update the PhysicalPortCache. If not, they will provide the

result of the previous conversion without performing the conversion calculation.

68

3.1.2.5.7.2 Plant and Physical Port Connection

Every input and output in the plant is named. A corresponding pseudo port must

be provided for each and every one of these inputs and outputs. The pseudo port then has

knowledge of which physical port it must retrieve data from, and send data to. When

providing a set of pseudo ports for the system, users must take care to map every input

and output to a valid physical input or output port.

3.1.2.5.7.3 Engineering Value Cache

PseudoPort operations are an unavoidable part of the evaluation of a plant. Data

must be fetched and converted to values the plant can understand. To help improve

compute time, each PseudoPort provides an engineering value cache. The plant could

request data at a pace much faster than the PhysicalPorts can provide it. In these

instances, the actual data retrieved from the PhysicalPortCache will have not changed.

Each PseudoPort maintains a copy of the previous Engineering Value it provided for

either an update or an evaluation, and the physical data it received that established the

engineering value. Should the new physical data match the previous physical data

exactly, the pseudo port will bypass the mapping calculation and simply provide the

previous engineering value.

3.1.2.5.8 AnalogPseudoPort Class

Analog PseudoPorts are PseudoPorts that map to physical ports that provide

analog data. Physical data is provided to the Analog Pseudo Port as a digital value that

represents an analog measurement made by the data acquisition device. This class

converts that measurement to a value meaningful to the plant.

69

Figure 40: Class AnalogPseudoPort

3.1.2.5.8.1 Responsibilities

The AnalogPseudoPort directly wraps one analog physical interface. Its main

function is to modify the data read from physical IO by scaling it to a range that is

meaningful to the plant. This is accomplished through simple linear scaling, though more

complex scaling systems could be added in the future. A physical data acquisition device

may be able to only provide inputs in the range of -10 to 10 volts, but these values could

correspond to any number of possible values and ranges. For example, consider a pitch

controller for an airplane that has the angle of the pitch as an input in degrees from

horizontal, from -0.6 to 0.6 radians. An AnalogPseudoPort can be configured to scale the

measured value provided by the data acquisition device to this range of values.

3.1.2.5.8.2 Engineering Value Conversion

AnalogPseudoPort converts physical data values to analog data values by scaling

the values linearly according to a traditional equation where m and b are

defined as:

70

Note that while this is the method currently used by the CSPS framework, it is not the

only method that can be used to scale this data. Future developers may alter this method

or add new ones as they see fit.

3.1.2.5.9 BinaryPseudoPort Class

The BinaryPseudoPort class connects physical digital ports to the inputs and

outputs of the plant. BinaryPseudoPorts may divide larger physical ports by mapping to

a subset of the physical port‟s bits.

Figure 41: Class BinaryPseudoPort

3.1.2.5.9.1 Responsibilities

The BinaryPseudoPort directly wraps the bits of a physical digital interface. It

does not scale values like the AnalogPseudoPort does, but it can be used to divide a

physical digital port into numerous smaller ports to be provided as separate inputs and

71

outputs to the plant. For example, one 32 bit physical port may have two different named

16 bit BinaryPseuoPorts mapped to it. In this way, a single physical input can be used as

two completely different plant inputs, which can be helpful when physical interface

resources are scarce.

3.1.2.5.10 Port Manager Class

The PortManager contains the PhysicalPortCache and any number of Pseudo

Ports that access the cache for updates. It converts user specifications for pseudo ports

into actual port objects that can carry out the functions needed to read and convert data

for the plant.

Figure 42: Class PortManager

3.1.2.5.10.1 Responsiblities

The PortManager class is responsible for maintaining the physical port cache and

all of the PseudoPorts in the system. Any time a port is to be accessed, added to the

system, or updated, the port manager fields the request and sends it to the intended port.

72

It is responsible for instantiating the physical port, and as such contains code that may

need to be altered should the data acquisition device be changed. It is also responsible

for retrieving data from the ports when requested. The plant will request all input values

at once, or will provide values to be sent to a set of output ports. The PortManager

retrieves the data from the ports and provides it to the plant as sets of name-value pairs.

It must also determine which ports are being updated from a set of name-value pairs and

update the pseudo ports accordingly.

3.1.2.5.11 Plant Class

The Plant class represents the plant evaluator. It handles the simulation of the

configured plant by fetching data from the port manager and applying it against the plant

configured by the user.

73

Figure 43: Class Plant

3.1.2.5.11.1 Responsibilities

The Plant Class is responsible for simulating the configured plant. It accepts a

configured plant as a set of state space matrices, discretizes it using a configurable

method, and simulates it against data it retrieves from the PortManager. It periodically

calculates a new set of states and outputs, the latter of which are provided back to the

PortManager for physical output. It also sends update messages back to the Win32

process containing the EngineeringValue information for the simulation cycle. This

74

output update may be configured to be pushed every simulation cycle, after a certain

number of simulation cycles, or only when requested. As all plants are evaluated at

discrete intervals, continuous plants must be discretized by the Plant class. For this

reason, the user must always provide a sampling frequency when defining plants.

3.1.2.5.12 PlantWatchdog Class

The PlantWatchdog class is initiated by the plant when simulation is begun. It

monitors the plant to make sure that the plant performs simulation cycles frequently

enough.

Figure 44: Class PlantWatchdog

3.1.2.5.12.1 Responsibilities

The PlantWatchdog is responsible for making sure that the plant operates fast

enough so as not to miss deadlines. After a configurable period of time, the

PlantWatchDog checks to see if the Plant has calculated a new set of outputs. If a new

set of outputs has not been calculated since the last time the watchdog checked, the

75

PlantWatchdog sends a critical error message back to the Win32 Process. This is

accomplished in a separate thread of execution so as not to affect the simulation itself.

76

3.1.3 System Interactions

Individual users may command the Control System Plant Simulator to perform

numerous actions, each of which involve interactions between numerous objects and

processes. The following section describes, in detail, some of the more important

interactions performed to execute these commands.

3.1.3.1 System Launch

The Control System Plant Simulator is launched by initiating the Win32 process,

which is responsible for launching the other processes. It must also wait until the other

processes have registered themselves before allowing user controlled operations.

Figure 45: System Launch Sequence Diagram

Any commands that are to be sent to either to Computation Kernel or the User

Interface will be dropped until those processes have reported that they are available.

Win32 Process Computation

Kernel

User Interface

Process

User

Execute

The user initiates the

Win32 process with

command l ine arguments

indicating which

Computation Kernel and

User Interface to launch

Launch

Launch

Report Available

Report Available

77

3.1.3.2 Saving and Loading Operations

The Control System Plant Simulator allows users to save the configurations they

have defined. Both plant and port configurations may be written to files that can be

loaded in the future.

3.1.3.2.1 Saving and Loading Ports

The UiToWinOutgoingInterface provides operations that allow user interfaces to

command the Win32 process to save or load pseudo port mapping to or from a file.

Figure 46: Load Port Mapping Sequence Diagram

 To load a port mapping from a file, the file name is passed to

SystemManagement. SystemManagement commands the FileManager to read the

indicated file and sends the loaded pseudo PortMapping to the

PortConfigurationManager.

UiToWinOutgoing

Interface

UiToWinIncoming

Interface

System

Management

PortConfiguration

Manager

FileManager

LoadPorts(file name)
LoadPortsFromFile(file name)

LoadPseudoPortMapping(file name)

return pseudoPortMapping

SetPortMapping(pseudoPortMapping)

return success

return success

return success

78

Figure 47: Save Port Mapping Sequence Diagram

To save a port mapping to a file, the file name is passed to SystemManagement.

SystemManagement requests the pseudo port mapping from the

PortConfigurationManager, and commands the file manager to save the retrieved

mapping to the indicated file.

3.1.3.2.2 Saving and Loading Plants

The UiToWinOutgoingInterface provides operations that allow user interfaces to

command the Win32 process to save or load plants to or from a file. Plants may only be

saved and loaded as state space systems. A plant initially defined by the user by any

other means, such as a transfer function defined by a set of zeros and poles, will be

converted by the PlantConfigurationManager as soon as it is set.

UiToWinOutgoing

Interface

UiToWinIncoming

Interface

System

Management
PortConfiguration

Manager

FileManager

SavePorts(file name)

return success

SavePortsToFile(file name)

return success

GetPortMapping()

return pseudoPortMapping

SavePseudoPortMapping(file name)

success

79

Figure 48: Load Plant Sequence Diagram

To load a plant from a file, the file name is passed to SystemManagement.

SystemManagement commands the file manager to read the indicated file and sends the

loaded state space plant to the PlantConfigurationManager.

Figure 49: Save Plant Sequence Diagram

UiToWinOutgoing

Interface

UiToWinIncoming

Interface

System

Management

PlantConfiguration

Manager

FileManager

LoadPlant(file name)

return success

LoadPlantfile name()

return success

SetPlantSS(plant)

return success

LoadPlant(file name)

return plant as State Space

PlantConfiguration

Manager

UiToWinOutgoing

Interface

UiToWinIncoming

Interface

System

Management

FileManager

SavePlant(file name)

return success

SavePlantToFile(file name)

GetPlant()

return plant as state space

return success

SavePlant(file name)

success

80

To save a plant configuration to a file, the file name is passed to

SystemManagement. SystemManagement requests the plant, as a set of state space

matrices, from the PlantConfigurationManager, and commands the file manager to save

the retrieved configuration to the indicated file.

3.1.3.3 Physical Data Retrieval and Caching

Data is acquired from the physical data acquisition device at periodic intervals

and stored for use by the other elements of the system. When data is ready for output, it

is written back to this same cache, where it will be used to periodically update the

physical IO as well.

Output Pseudo
Port

PhysicalPortCache Input Physical
Port

Output Physical
Port

Physical Port
Cache Thread

Input Psuedo
Port

Construction

Construction

GetPortValue(Port Name)
Return Cached Port Value

SetPortValue(port name, value)
Save Value to Cache

Run()
Sleep Until Port
Evaluation Time

ReadValue

value
Cache value

Sleep Until Port
Evaluation Time

WriteValue(cached value)

Fetch Data
from Cache

Read data from acquisition device

Write data to
acquisition device

Figure 50: Physical Data Retrieval and Caching Sequence Diagram

81

 As the Computation Kernel is launched, the PhysicalPortCache populates itself

with PhysicalPort objects representing all of the physical interfaces offered by the data

acquisition device connected to the system. Once the PhysicalPortCache has been

populated with ports, it starts a separate thread of execution that will be responsible for

reading from and writing to the physical ports. This thread determines which port is the

next to be updated and how long it must wait before the update is to occur. This is a

relative time measurement that does not account for computation time or the delay in

activation out of sleep. The period of time between updates may be configured by the

user for each port individually.

 When the waiting period is up, the thread determines whether to read from, or

write to the physical port. The first port update in figure 48 is an input port. The

PhysicalPortCache commands the PhysicalPort to read from its interface and stores the

returned value into a cache. Once the read is complete, the PhysicalPortCache

determines how long to wait before the next update and sleeps again. When a PseudoPort

needs to access physical data, it requests data from the PhysicalPortCache which provides

the value from its internal cache. When a PseudoPort needs to write data to physical

output, it sends the data to the PhysicalPortCache, which stores it in its internal cache for

future use. Eventually an output PhysicalPort will be scheduled for update. When the

PhysicalPortCache recognizes that it must update a PhysicalPort designated for output, it

retrieves data from its cache and sends it to the PhysicalPort. The PhysicalPort then

writes the data to its physical interface.

3.1.3.4 Simulation Start

When the user requests the start of simulation, the Win32 process must verify that

the configurations are valid, and send the necessary configuration information to the

Computation Kernel.

82

Figure 51: Simulation Start - Win32 Process Side

The process starts when the request from the User Interface reaches the Win32

process through the UiToWinIncomingInterface. The start execution call is forwarded to

SystemManagement. Initially, the SystemManagement makes sure that the plant and port

configuration is valid. This check makes sure that no input or output names are reused

for either the plant or the ports, and that every input or output of the plant has a

corresponding pseudo port.

Once the configuration has been validated, the SystemManagement sends

commands to the Win32 process through the WinToCompOutgoingInterface to clear any

current plant and port configurations. Once those are clear, the plant is fetched from the

UiToWin Incoming

Interface

System

Management

PlantConfiguration

Manager

PortConfiguration

Manager

WinToComp

Outgoing Interface

StartExecution

ValidatePlantAndPorts()

ClearPlant()

ClearPorts()

GetPlant()

return StateSpace plant

SetPlant(plant)

return success

return success

return success

GetPorts()

return port mapping

AddPort(port)

return success

AddPort(port)

return success

...

StartExecution()

return success

return success

These operations

repeat until all ports

have been added

83

PlantConfigurationManager and sent to the Computation Kernel. If the Computation

Kernel accepts the plant, SystemManagement fetches the port mapping from the

PortConfigurationManager. It walks through the port mapping and configures the

Computation Kernel one port at a time. If every port is sent successfully,

SystemManagement commands the Computation Kernel to begin simulation.

Figure 52: Simulation Start - Computation Kernel Side

WinToComp
IncomingInterface

Plant PlantWatchdog PortManager PhysicalPort
Cache

...

These operations
repeat until all ports
have been added

ClearPlant()

return success

empty plant matrices

ClearPorts()
Delete Pseudo Ports

return success

SetPlant(plant) DiscretizePlant
(if necessary)

return success

AddPseudoPort(PseudoPortDescriptor)
Construct New

PseudoPort

return success

StartCache()
EnablePort(port name)

EnablePort(port name)

Start()

StartExecution()
SetWatchdogTime(time)

StartWatchdog()

Start Plant Evaluation Thread
return success

84

 The Computation Kernel must provide a response to each of the commands sent

by the Win32 process. ClearPlant and ClearPort commands simply empty the current

configurations. When a plant is established through the SetPlant command, the Plant will

have to discretize any continuous plants before any operations may proceed. The

AddPseudoPort operation provides the information needed to instantiate a PseudoPort

object. The PortManager creates these PseudoPort objects according to the descriptors

passed in, adding them one by one to its configuration. The actual start command results

in two separate calls: StartCache called upon the PortManager, and StartExecution called

upon the Plant object. When StartCache is called on the PortManager, it enables all of

the physical ports that will be used for the simulation. The PhysicalPortCache has an

object for every physical interface, but only a select few may actually need to be written

to or read from. Calling EnablePort on the PhysicalPortCache indicates that the port

enabled must be added to the list of ports that must be updated periodically. The

StartExecution operation causes the plant to initiate the PlantWatchdog and begin to

evaluate the plant at discrete intervals.

3.1.3.5 Simulation Cycle

A simulation cycle consists of all of the operations required to fully evaluate the

plant at a particular instant in time. This involves retrieving inputs, evaluating outputs

and states, and sending calculated output values down to PhysicalPortCache.

85

Figure 53: Simulation Cycle

 Every simulation cycle begins by fetching Engineering values from the

PortManager to be used as inputs. The EvaluateInputPseudoPorts call causes the

PortManager to walk through all of the configured input PseudoPorts, calling Evaluate on

each one of them. These PseudoPorts fetch the most recently cached physical value from

the PhysicalPortCache, and converts it to an EngineeringValue if it is different from the

last physical value retrieved from the PhysicalPortCache. If it was not, the previously

calculated EngineeringValue is used instead. Either way, an EngineeringValue is

returned to the PortManager. The PortManager compiles these results into a set of

Plant PortManager PseudoPort PhysicalPort

Cache

CompToWin

Outgoing Interface

Wait For

Simulation Period

EvaluateInputPseudoPorts()

Evaluate()
GetPortValue()

return cached value

Convert value to

EngineeringValue

return Engineering Value

return pseudoPort names and values

Evaluations are repeated

until all pseudoports

have been checked

Perform State Space Equations

UpdateOutputPseudoPorts(OutputValues)

Update(value)
convert

EngineeringValue to

physical value

SetPortValue(value)
save value in

cache
return success

return success

Updates are repeated until

all pseudo ports have been

successfully updated

return num ports updated

UpdateIO(IO Information)

86

port/value pairs and returns them to the Plant. The Plant uses these values as inputs and

calculates the next set of outputs and states using the configured plant matrices according

to Equations 7 and 8.

The calculated states are saved for the next simulation cycle. The outputs are sent

to the PortManager through the UpdateOutputPseudoPorts call. Again, the PortManager

walks through its list of output PseudoPorts and calls Update on each of them with the

calculated output value. These PseudoPorts convert the new EngineeringValue to a

physical output value. if necessary because it changed, and sends the data to the

PhysicalPortCache through the SetPortValue operation. The PhysicalPortCache stores

the output value in its cache until the next time the physical port is updated, at which

point the cached value will be sent directly to physical output.

 Finally, the plant updates the Win32 process with the current input/output data.

This is performed according to the configurable IO Update Method. IO Information can

be provided every simulation cycle, periodically every few simulation cycles, or only

when requested by the Win32 process.

87

3.2 Implementation Details

The preceding section detailed the design of the Control System Plant Simulator.

This section provides information about how the design is implemented in the package

provided. Users are expected to customize, add to, and update the Control system Plant

Simulator to meet their own needs. The programs provided by this thesis are but one of

many possible versions.

3.2.1 Code and Programming Environment

The Control System Plant Simulator is an open source project written with the

intent of allowing end users to change and rebuilt code. As such, some information

regarding the build environment and code style is provided to simplify end user

development.

3.2.1.1 File Organization

A complete listing of each file and where they are located is included in Appendix

A. This section provides basic information as to how the files are organized, and where

to look for the provided executable Control System Plant Simulator files.

 The Control System Plant Simulator is provided as a package that includes

precompiled executable files, and modifiable source code. All files are contained in a

directory named CSPS. This will be referred to as the root directory.

 There are four folders in the root directory: CODE, DOCUMENTS,

RTX_PKG, and WIN_PKG.

Figure 54: Directory Structure

88

The CODE directory contains all of the Visual Studio and Visual Basic projects

and source code. The DOCUMENTS directory contains all of the documents provided

for the CSPS Framework, including the User Manual. The RTX_PKG directory

contains the executables required to launch the provided RTX
®
 port of the Control

System Plant Simulator. Finally, the WIN_PKG contains all of the executables needed

to launch the Win32 version of the CSPS. Note that the Windows and RTX
®
 versions are

similar, but must be compiled separately.

 The CODE directory contains a separate folder for each project in the Visual

Studio 6.0 project, the project itself, and a folder for the Visual Basic user interface. It

also contains a Shared folder used to house all of the code that does not change from

version to version.

 See Appendix A for a complete listing of the provided directories.

3.2.1.2 Required Tools

The Control System Plant Simulator was developed using Microsoft Visual

Studio 6.0, and is intended to be run primarily as a 32 bit Windows console application.

Two user interfaces are provided. One is a console application using Microsoft Visual

Studio 6.0, and another is a simple GUI built with Microsoft Visual Basic 6.0. Two

Computation Kernels are provided, both of which are built using the Microsoft Visual

Studio programming environment. One of these is a Win32 process that does not run in

real time, but can utilize USB interfaces, and the other is an RTX
®
 process that DOES

run in real time. The RTX
®
 process was built using RTX

®
 version 6.0 libraries. Two

Win32 processes are provided as well. While neither runs in real time, one of them must

be built using the RTX
®

 libraries in order to communicate with the RTX
®
 Computation

Kernel. The Windows based Computation Kernel was written to communicate with the

Data Translations 9812 data acquisition board. To build this process the Data

Translations DT-OpenLayers libraries must be included. To successfully run this

application, a Data Translations 9812 data acquisition device must be attached to the host

PC via USB.

89

RTX
®
 runs in Kernel mode. This is problematic because as a kernel mode application,

RTX
®
 processes may only be launched by a process with administrative privileges. This

can be circumvented by creating a service that is responsible for launching RTX
®

processes because services run with administrator privileges. ServiceExample.zip in the

DOCUMENTS directory is an example produced by Ardence
®

 Technical support team

as an example of how to create a service that can launch RTX processes.

3.2.1.3 Workspace and Projects

The code for the Control System Plant Simulator is provided as part of a Visual

Studio 6.0 workspace titled CSPS. This workspace consists of the following projects:

 CSPS_W32_CompKernel – The CSPS_W32_CompKernel project contains

the code and configurations necessary to build the Win32 port of the

Computation Kernel. To build the CSPS_W32_CompKernel, the Active

Configuration must be set to Win32 Release. Building this project will create

the CSPS_W32_CompKernel.exe executable, a copy of which will be placed

in the directory /CSPS/WIN_PKG.

 CSPS_RTX_CompKernel – The CSPS_RTX_CompKernel project contains

the code and configurations necessary to build the RTX
®
 Computation Kernel.

To build the CSPS_RTX_CompKernel, the Active Configuration must be set

to Win32 RTSS Release which will ensure that the final executable is a true

RTX
®
 process. Building this project will create the

CSPS_RTS_CompKernel.rtss RTX
®
 executable, a copy of which will be

placed in the directory /CSPS/RTX_PKG.

 CSPS_W32_Kernel – The CSPS_W32_Kernel project contains the code and

configurations necessary to build a version of the Win32 process that is

compatible with the CSPS_W32_CompKernel Computation Kernel process.

The Operating System Abstraction files are configured such that Windows

operating system calls are used for inter-process communication. To build the

CSPS_W32_Kernel, the Active Configuration must be set to Win32 Release.

90

Building this project will create the CSPS_W32_Kernel.exe executable, a

copy of which will be placed in the directory /CSPS/WIN_PKG.

 CSPS_W32_Kernel_RTX_PORT – The CSPS_W32_Kernel_RTX_Port

contains the code and configurations necessary to build a version of the

Win32process that is compatible with the CSPS_RTX_CompKernel

Computation Kernel process. The Operating System Abstraction files are

configured such that RTX
®
 operating system calls are used for the inter-

process communication between the W32 process and the Computation

Kernel. To build the CSPS_W32_Kernel_RTX_PORT, the Active

Configuration must be set to Win32 Release. Building this project will create

the CSPS_W32_Kernel_RTX_PORT.exe executable. Note that this is NOT

an RTX
®
 application. It does NOT run in real-time. It does need to be linked

against the RTX
®
 runtime library to access RTX

®
 operating system calls in

order to communicate with the CSPS_RTX_CompKernel.rss executable.

Building this project places a copy of the CSPS_W32_Kernel_RTX_Port.exe

file in /CSPS/RTX_PKG.

 SimInterface – The SimInterface project provides a „helper‟ application

outside of the scope of the Control System Plant Simulator. It is not needed to

run the CSPS successfully. The RTX
®

 version of the Control System Plant

Simulator provided does not provide USB support. This means that the

primary data acquisition device (Data Translations 9812) can not be used.

Instead a simulated physical interface was created for the RTX
®
 port. The

CSPS_RTX_CompKernel is provided with a PhysicalPortCache designed to

interact with this simulated interface. It will read and write data to shared

memory instead of to a physical interface. The SimInterface program will

allow the user to set input values, review output values, or run a script setting

input values on the fly. See Section 6.1 of the User Manual to review the

operational instructions for the SimInterface executable. To build the

SimInterface project, the Active Configuration must be set to Win32 Release.

Building this project will create the SimInterface.exe executable, a copy of

which will be placed in /CSPS/RTX_PKG.

91

 SimpleUI – SimpleUI is a project providing an example of a simple text

based Win32 that can interface with any version of the Control System Plant

Simulator. Note that while it can be used as a fully functional interface, it is

intended to serve as an example end users may review to help them create

their own User Interface processes. For more information on how to construct

a User Interface process, see Section 3 of the User Manual. It demonstrates

how to make function calls from the User Interface to the Win32 process

utilizing the UiWinInterface.dll. To build the SimpleUI project, the Active

Configuration must be set to Win32 Release. Building this project will create

the SimpleUI.exe executable, a copy of which will be placed in

/CSPS/WIN_PKG and /CSPS/RTX_PKG. See Section 3.5 of the User

Manual for more information about the commands accepted by Simple UI.

 UiWinInterface – The UiWinInterface project provides the files and

configurations needed to construct the UiWinInterface dynamically linked

library that can be used to aid User Interface development. To build the

UiWinInterface project, the Active Configuration must be set to Win32

Release. Building this project will create the UiWinInterface.dll library, a

copy of which will be placed in /CSPS/WIN_PKG and /CSPS/RTX_PKG.

In addition, a single Visual Studio project is provided. ExampleUI.vbp is a

visual basic project that constructs a fully operational GUI that can interface with the

Win32 process through the use of the UiWinInterface library. Like SimpleUI this is not

intended to be used as an interface, but rather to serve as an example of how such a user

interface may be created, but it is a fully functional working interface. See section 3.6 of

the User Manual for more information about the ExampleUI interface and the

functionality provided.

92

3.2.1.4 Conventions

As users are expected to modify the code provided by the Control System Plant

Simulator, some information must be provided as to how the code is organized. This will

help facilitate searching through the code when modifying or porting it.

3.2.1.4.1 LocalDefinitions.h

The vast majority of the code used in each project goes unchanged. Typically

only the Operating System Abstraction objects must actually be changed. Different

implementations of the PhysicalPortCache and PhysicalPort classes will also be needed

for different physical port interfaces. The two ports of the Control System Plant

Simulator use different physical data acquisition systems; the RTX
®
 port interfaces with

the SimInterface and the Win32 port interfaces with the Data Translations 9812 data

acquisition device. As noted in Section 3.1.2.1.1 operating system objects provide two

implementations, a primary and a secondary. For the Win32 port, all operations are

carried out as Windows operating system calls, so the secondary implementation is

ignored. For the RTX
®

 port, the secondary implementation contains RTX
®
 calls. This

duality is achieved without modifying the Operating System Abstraction code through

the use of pre-compiler directives.

Every project contains a file titled LocalDefinitions.h. LocalDefinitions.h defines

a set of pre-compiler definitions that indicate whether or not a secondary interface is

needed. If the secondary interface is required, it is up to the users to modify the

Operating System Abstraction files to make the proper secondary interface operating

system calls. LocalDefinitions.h also contains definitions that indicate which set of

physical ports to include. Two sets are provided – SimPorts and DTPorts for the

SimInterface and Data Translations 9812 respectively – but more may be added. This

limits the amount of code that must be changed in the PortManager and prevents the

creation of separate versions of the PortManager for each physical interface.

93

3.2.1.4.2 Extensions and Header Files

The Control System Plant Simulator is written in C++. All source files are

written with .cpp extensions. Header files are provided with .h extensions. Every class is

declared in its own header file. Detailed information about the signature of each function

provided by the class is stored in the header file, but is left out of the source. This

information includes what the function does, what each of its parameters are, and what

the return value represents. Should a user be confused as to what a particular function

does, or what the parameters represent, the .h file has the answers.

3.2.1.4.3 Naming Conventions

Naming conventions do not follow standard Windows MFC naming conventions.

No type information is included in the name of a particular variable, and all names are

provided in „bumpy‟ notation. Local data members are prefaced by „m‟, as in

mDataMember. Variables are lowercase. Functions and class names are both uppercase.

3.2.2 Data Acquisition Device

The Control System Plant Simulator executables provided are designed to

interoperate with the Data Translations 9812 data acquisition device. This is a USB

driven data acquisition device that provides the following interfaces:

 One 8 bit Digital Input

 One 8 bit Digital Output

 8 Analog Inputs accepting voltages from -10 volts to +10 volts

 2 Analog Outputs, providing voltages from -10 volts to +10 volts.

The DTPhysicalPortCache and DTPhysicalPort classes have been provided to manage

this data acquisition device.

94

3.2.3 Plant Definition Types Supported

The Control System Plant Simulator package provided offers six different ways to

define a plant, each of which, with the exception of the state space method, must be

converted to a set of state space equations. The plant may be defined as a set of State

Space matrices, as a transfer function defined by a numerator and denominator, as a

transfer function defined by a set of poles and zeros, as a matrix of transfer functions

defined either way, or as a set of nonlinear equations. Transfer functions are converted

to state space equations as per the controller algorithm defined in Section 2.1.4. Matrices

of transfer functions are converted to state space equations by converting each transfer

function and placing the resultant state space matrix as a submatrix within the overall

system matrix. Conversion of a set of nonlinear equations is performed as described in

Section 2.1.7. New plant definition types may be added by modifying the

PlantConfigurationManager class, and adding to the options available to the user when

setting the plant.

95

3.3 Evaluation

In order to gage the effectiveness of the Control System Plant Simulator, a

number of plants were simulated using both versions (Win32 and RTX
®
) and compared

against a Matlab simulation of the same plant. Note that the Win32 version can fully

interface with the Data Translations DT 9812 device, and therefore can behave as a full

Hardware-In-The-Loop system. Each plant was simulated using the Win32 version along

with the Data Translations DT-9812 data acquisition device, allowing for full physical

IO. All outputs provided for the Win32 version of the CSPS are oscilloscope captures.

The RTX
®
 port, however, cannot send data to the Data Translations DT-9812 device.

Instead, the RTX system was interfaced with a simulated port interface. All RTX
®

results were taken from the log file produced while running under RTX
®
.

Finally, the CSPS was provided to a class of Real-time Systems students as a tool

to enable them to develop their own real-time plants. The following plants were used to

test the effectiveness of the Control System Plant Simulator.

3.3.1 Results Comparison

The following table outlines the results for each plant against the expected values.

Table 2: Results Comparison

Plant
CSPS

Version
Expected Value Simulated value % difference

Spring-Mass

Win32

0.15 at 1.26 sec 0.14 at 1.26 sec -6.6%

0.251 at 2.26 sec 0.25 at 2.26 sec -0.4%

0.329 at 5.38 sec 0.33 at 5.38 sec +0.3%

RTX
®

0.15 at 1.26 sec 0.148 at 1.3 sec -1.3%

0.251 at 2.26 sec 0.251 at 2.3 sec 0%

0.329 at 5.38 sec 0.33 at 5.4 sec +0.3%

Airplane Pitch

Win32

0.44 at 4.57 sec 0.44 at 4.56 sec 0%

0.468 at 6.83 sec 0.46 at 6.80 sec -1.7%

0.838 at 16.1 sec 0.812 at 16.1 sec -3.1%

RTX
®

0.44 at 4.57 sec 0.44 at 4.6 sec 0%

0.468 at 6.83 sec 0.47 at 6.8 sec +0.4%

0.838 at 16.1 sec 0.84 at 16.1 sec +2.4%

Bus

Suspension
Win32

2.23e-5 at 0.633 sec 2.04e-5 at 0.64 sec -8.5%

3.55e-6 at 1.25 sec 3.30e-5 at 1.28 sec -7.0%

96

1.29e-5 at 28.2 sec 1.02e-5 at 28.2 sec -20.9%

RTX
®

2.23e-5 at 0.633 sec 2.2e-5 at 0.6 sec -1.34%

3.55e-6 at 1.25 sec 4.0e-6 at 1.2 sec * +15%

1.29e-5 at 28.2 sec 1.3e-5 at 28.2 sec +0.8%

Car Shock

System

Win32

Car Pos

1.42 at 1.34 sec 1.52 at 1.38 sec +7.0%

0.988 at 6.14 sec 1.02 at 6.14 sec +3.2%

Win32

Wheel Pos

1.26 at 1.24 sec 1.22 at 1.24 sec -3.2%

0.955 at 5.76 sec 0.98 at 5.76 sec +2.6%

RTX
®

Car Pos

1.42 at 1.34 sec 1.42 at 1.3 sec 0%

0.988 at 6.14 sec 0.988 at 6.1 sec 0%

RTX
®

Wheel Pos

1.26 at 1.24 sec 1.26 at 1.2 sec 0%

0.955 at 5.76 sec 1.00 at 5.8 sec 4.7%

* the value at 1.3 sec = 3.0e-6, so 3.55 for 1.25 is reasonable.

The sections that follow contain specifics about each of the simulated plants and

the values obtained from them.

3.3.2 Spring – Mass System

One of the simplest plants evaluated is that of a spring and weight system. This

system models a mass connected to a spring. A force, the input, is applied pushing the

mass, which stretches the spring. The spring and a damping frictional force work against

the mass.

3.3.2.1 State Space Equations

The state space equations are defined as follows:

State Matrix:

Input Matrix:

Output Matrix:

Feedthrough Matrix:

[25]

97

3.3.2.2 Matlab Simulation

Figure 53 contains the Matlab simulated step response to the Spring – Mass system.

Figure 55: Matlab Simulation of the Step Response of the Spring-Mass System

Note the indicated data points along the curve. These three data points are

compared directly to data points taken at similar points in time during physical

simulation.

3.3.2.3 Windows CSPS Simulation

The following figures contain captures from an oscilloscope during the step-

response simulation of the Spring – Mass plant.

98

Figure 56: Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 1.26 Seconds

 Figure 54 displays the oscilloscope capture of the step response of the Spring-

Mass plant. The cursors measure the difference between time and voltage from the initial

state. After 1.26 seconds the voltage has increased by 0.14 volts. Compare this to the

Matlab simulation, where after 1.26 seconds, the amplitude had reached a value of 0.15.

Figure 57: Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 2.26 Seconds

99

 Figure 55 shows that after 2.26 seconds, the voltage has increased by 0.25 volts.

Compare this to the Matlab simulation where, after 2.26 seconds, the amplitude had

reached a value of 0.251.

Figure 58: Oscilloscope Capture of Simulation of Spring Mass System, With Datapoint at 5.38 Seconds

 Finally, figure 56 shows that after 5.38 seconds, the voltage has reached 0.33

volts. Compare this with the Matlab simulation where, after 5.38 seconds, the amplitude

reached a value of 3.29.

Note that the signal appears very noisy. This happens primarily because the curve

is very small; it reaches steady state at approximately 300 millivolts. The captures were

obtained after zooming in a great deal to capture the distinct features of the curve causing

small variations to appear quite large.

100

3.3.2.4 RTX® CSPS Simulation

The following are diagrams created from the log files produced during the

simulation of plant using the RTX
®
 CSPS framework.

Figure 59: RTX Simulation of Spring-Mass System

One can see through inspection that the output produced is similar to that of the

actual curve as calculated by Matlab. Specific values produced by the simulation to

compare against those of Matlab are:

 0.148 volts at 1.3 seconds

 0.251 volts at 2.3 seconds

 0.33 volts at 5.4 seconds

3.3.3 Airplane Pitch Plant

To demonstrate the ability of the Control System Plant Simulator to represent an

unstable plant, the following model of how an aircraft will pitch given the elevator

deflection angle was simulated.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TI
M

E
(s

)

0
.4

0
.8

1
.2

1
.6 2

2
.4

2
.8

3
.2

3
.6 4

4
.4

4
.8

5
.2

5
.6 6

6
.4

6
.8

101

3.3.3.1 State Space Equations

The model was defined through the following state space equations:

State Matrix:

Input Matrix:

Output Matrix:

Feedthrough Matrix:

[24]

3.3.3.2 Matlab Simulation

Figure 58 contains the Matlab simulated step response to the plant

Figure 60: Matlab Simulation of Airplane Pitch Plant

Note the indicated data points along the curve. These data points will be

compared against the physical values obtained during simulation. It is also worth noting

that the response increases without bounds; the system is unstable.

102

3.3.3.3 Windows CSPS Simulation

The following figures contain captures from an oscilloscope during the step-

response simulation of the Airplane Pitch plant.

Figure 61: Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 4.56 Seconds

Figure 59 displays the oscilloscope capture of the step response of the Airplane

Pitch plant. The cursors measure the difference between time and voltage from the initial

state. After 4.56 seconds the voltage has increased by 0.44 volts. Compare this with the

Matlab simulation where after 4.57 seconds, the amplitude reached a value of 0.44.

103

Figure 62: Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 6.80 Seconds

 Figure 60 shows that after 6.80 seconds, the output has increased by 0.460 volts.

Compare his with the Matlab simulation where, after 6.83 seconds, the amplitude reached

a value of 0.468.

Figure 63: Oscilloscope Capture of Simulation of Airplane Pitch Plant, With Data Point at 16.1 Seconds

 Finally, figure 61 shows that, after 16.1 seconds, the voltage has increased by

0.812 volts. Compare this with the Matlab simulation that shows that after 16.1 seconds,

the amplitude had reached a value of 0.838.

104

3.3.3.4 RTX® CSPS Simulation

The following are diagrams created from the log files produced during the

simulation of plant using the RTX
®
 CSPS framework.

Figure 64: RTX Simulation of Airplane Pitch Plant

Again one can clearly see that the simulation closely follows the curve produced

by Matlab. Actual data points to be compared with those read from Matlab are:

 0.44 volts at 4.6 sec

 0.47 volts at 6.8 sec

 0.84 volts at 16.1 sec

3.3.4 Bus Wheel and Suspension System

Bus suspension systems can be simplified as spring – damper systems. The

following system was chosen to be simulated because its output is extremely small. This

will not only test the Control System Plant Simulator‟s ability to simulate a plant, but also

the ability of the Analog Pseudo Ports to scale values up into output ranges. If the pseudo

port is configured to scale all engineering values from 0 to 0.00003 to the physical range

of -10 volts to 10 volts, than any engineering value of 0 will be scaled down to -10 volts

of physical output, where a value of 0.00003 will be amplified to 10 volts. Thus all

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
TI

M
E

(s
)

0
.9

1
.8

2
.7

3
.6

4
.5

5
.4

6
.3

7
.2

8
.1 9

9
.9

1
0

.8

1
1

.7

1
2

.6

1
3

.5

1
4

.4

105

values will be scaled by approximately 666,666.67. Any calculation errors should be

magnified and noticeable.

3.3.4.1 State Space Equations

The State Space equations are defined as follows:

State Matrix:

Input Matrix:

Output Matrix:

Feedthrough Matrix:

[24]

3.3.4.2 Matlab Simulation

Figure 63 contains the Matlab simulated step response to the plant

Figure 65: Matlab Simulation of Bus Wheel and Suspension System

106

 The bus suspension system oscillates before reaching a steady state final value.

Note however, how very small the indicated values are. These data points will be

compared against the scaled up versions provided by the physical output during

simulation.

3.3.4.3 Windows CSPS Simulation

The following figures contain captures from an oscilloscope during the step-

response simulation of the Bus Suspension plant.

Figure 66: Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 0.64

Seconds

 Figure 64 is an oscilloscope capture of the step response of the plant, as simulated

by the Control System Plant Simulator. Here one sees that after 640 milliseconds the

system has a voltage difference of 13.6 volts from startup. The pseudo port for this

particular output was established with a minimum value of 0 and a maximum value of

0.00003, meaning that the engineering value 0 is scaled to -10 volts for physical output,

and the engineering value of 0.00003 is scaled up to +10 volts. This is the reason the

output has been recentered around 0 volts, and why the difference between the initial

position and the measured peak is so great. A difference of 13.6 volts is approximately

107

the equivalent of an amplitude of 0.0000204. Compare this to the Matlab simulation

where, after 633 milliseconds the system reached an amplitude of .0000223.

Figure 67: Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 1.28

Seconds

Figure 65 indicates a value of 2.2 volts after 1.28 seconds. After conversion, this is

approximately equal to an amplitude of 0.0000033. Compare this to the Matlab

simulation where, after 1.25 seconds the amplitude reached a value of .00000355.

Figure 68: Oscilloscope Capture of Simulation of Bus Wheel and Suspension System, With Data Point at 28.2

Seconds

108

Finally, figure 66 indicates a value of 6.8 volts after 28.2 seconds of execution. After

conversion, this is approximately equal to an amplitude of 0.0000102. Compare this with

the Matlab simulation where, after 28.2 seconds the system reached an amplitude of

0.0000129.

3.3.4.4 RTX® CSPS Simulation

As described previously, it was only possible to simulate the RTX
®
 port. The

following is a chart of the data collected during that simulation.

Figure 69: RTX Simulation of Bus and Wheel Suspension System

The curve produced by the Control System Plant Simulator is remarkably similar

to the curve produced by Matlab. Actual data points to be compared with those read from

Matlab are:

 0.000022 at 0.6 sec

 0.000004 at 1.2 sec

 0.000013 at 28.2 sec

3.3.5 Car and Wheel Shock Absorber System

0

0.000005

0.00001

0.000015

0.00002

0.000025

TI
M

E
(s

)

1
.6

3
.2

4
.8

6
.4 8

9
.6

1
1

.2

1
2

.8

1
4

.4 1
6

1
7

.6

1
9

.2

2
0

.8

2
2

.4 2
4

2
5

.6

2
7

.2

2
8

.8

109

The final plant used for evaluation is a simple automobile shock absorber system.

The system has one input (Road position) and two outputs (Car position and Wheel

Position), testing the multiple output capability of the Control System Plant Simulator.

3.3.5.1 State Space Equations
The State space equations for the Car and Wheel Shock Absorber system are

defined as follows:

State Matrix:

Input Matrix:

Output Matrix:

Feedthrough Matrix:

[25]

3.3.5.2 Matlab Simulation

Figure 68 contains the step response of the Car Suspension system plant.

110

Figure 70: Matlab Simulation of Car Shock Absorber System

Note the data points taken at the peak of both outputs and at the point near the

steady state. These data points will be compared against the values obtained during

simulation.

3.3.5.3 Windows CSPS Simulation

The following figures contain captures from an oscilloscope during the simulation

of the Car Suspension system plant.

111

Figure 71: Oscilloscope Capture of Simulation of Car Position Step Response with Data Point at 1.38 Seconds

Figure 69 is a capture of the car position step response. Note the difference in time and

voltage are measured from the beginning of simulation. At 1.38 seconds the output has

peaked at 1.52 volts. Compare this with the Matlab simulation where after 1.34 seconds

the amplitude reached a value of 1.42.

Figure 72: Oscilloscope Capture of Simulation of Car Position Step Response with Data Point at 6.12 Seconds

112

Figure 70 is a capture of the car position step response as well, with time and voltage

measurements from zero to near steady state. Note that the system steadies out after

approximately 6.12 seconds at 1.08 volts. Compare with the Matlab simulation where

after 6.14 seconds the amplitude reached a value of 0.988.

Figure 73: Oscilloscope Capture of Simulation of Wheel Position Step Response with Data Point at 1.24 Seconds

Figure 71 is a capture of the wheel position step response. The change in time and in

voltage are measured from 0, thus the voltage peaks at 1.22 volts after 1.24 seconds.

Compare with the Matlab simulation where after 1.24 seconds the amplitude reached a

value of 1.26.

113

Figure 74: Oscilloscope Capture of Simulation of Wheel Position Step Response with Data Point at 5.76 Seconds

Figure 72 is a capture of the wheel position step response as well, with time and voltage

measurements from zero to near steady state. Note that the system steadies out after

approximately 5.76 seconds at 0.98 volts. Compare with the Matlab simulation where,

after 5.76 seconds, the amplitude reached a value of 0.995.

114

3.3.5.4 RTX® CSPS Simulation

The following charts were produced from data captured during simulation under

RTX
®
.

Figure 75: RTX Simulation of Car Position Step Response

Figure 73 provides Car Position data from the RTX
®
 simulation of the plant. Relevant

data points for comparison against the Matlab plot are as follows:

 1.42 volts at 1.3 seconds

 0.988 volts at 6.1 seconds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
TI

M
E

(s
)

0
.3

0
.6

0
.9

1
.2

1
.5

1
.8

2
.1

2
.4

2
.7 3

3
.3

3
.6

3
.9

4
.2

4
.5

4
.8

5
.1

5
.4

5
.7 6

6
.3

6
.6

115

Figure 76: RTX Simulation of Wheel Position Step Response

Figure 74 provides Wheel Position data from the RTX
®
 simulation of the plant. Relevant

data points for comparison against the Matlab plot are as follows:

 1.22 volts at 1.24 seconds

 0.98 volts at 5.76 seconds

3.3.6 Comments on Results

In general, the results are very encouraging, with most simulated error at or below

three percent. Considering these simulations are discretized versions of continuous

plants, sampled at the relatively low frequency of ten hertz, and that the physical

simulations were conducted in Windows and not a Real-Time system, the results are

encouraging.

There are, of course, a few notable exceptions. The first physical measurements

of the Spring-Mass plant and of the Car Shock Absorber system were both large when

compared to the other measurements. In the case of the Spring-Mass system, granularity

of the measurements becomes a problem. The expected value was 0.15, and the

measured value was 0.14. This is as close as the measurements can be without being

equal. The large percentage difference is more a result that the values are small than that

they differ in any meaningful way. The measurement taken for the Car Shock Absorber

system is not truly comparable to that taken in Matlab as the values are measured at

0

0.2

0.4

0.6

0.8

1

1.2

1.4

TI
M

E
(s

)

0
.3

0
.6

0
.9

1
.2

1
.5

1
.8

2
.1

2
.4

2
.7 3

3
.3

3
.6

3
.9

4
.2

4
.5

4
.8

5
.1

5
.4

5
.7 6

6
.3

6
.6

116

slightly different moments in time. The curve indicates that, should a closer

measurement have been possible, the outcome would have been much better.

 Finally, the values from the Windows simulation of the Bus Suspension System

were not very close. When one considers the fact that the output of the plant is being

magnified by over 65,000 it is easy to understand why these values differ so much, but

the percent error in this case would be limiting. For this reason, the Control System Plant

Simulator can not be recommended for systems that require such gross magnification of

their output. Scaling Engineering Values to physical data must be kept to a more

reasonable range. Worth noting, however, is the fact that the curves constructed were

similar in structure and in timing. It is just the magnitude that was unfortunately

inaccurate.

3.3.7 Classroom Application

The Control System Plant Simulator was developed around the idea that its

primary function would be to assist in the education of control system development.

During development, the Control System Plant Simulator was provided to a class of

graduate and undergraduate Software and Computer Engineering students. The students

used the Control System Plant Simulator to develop simple VxWorks controllers for the

Car and Wheel shock absorber system described in section 3.3.5. The project required

them to manually tune the coefficients of a standard Proportional-Integral-Derivative

controller to minimize the overshoot and settling time of the plant. They did not know

the plant model and tuned the controller experimentally. The experiment was a success

as the students were able to construct reasonable controllers that produced real physical

control signals to manage the simulated plant. There were no complaints or problems

using the CSPS Framework for this project. This serves as evidence that the Control

System Plant Simulator has the capability to become a reasonably useful tool in

education.

117

4. Future Work

There are many ways the Control System Plant Simulator may be improved and

extended. The Control System Plant Simulator was designed with future development in

mind. From complete modifications to how plants are input and discretized, to the

addition of robust user interfaces designed for specific plant simulations, the Control

System Plant Simulator is a framework upon which many modifications and

customizations may be made. Specific examples include

 User Interfaces. It cannot be stressed enough that end developers should take

advantage of the modular design of the Control System Plant Simulator by

constructing their own user interfaces tailored for individual plants. Considerable

effort was invested to simplify the process of interfacing UI applications with the

CSPS, not the least of which is the UiWinInterface dynimcally linked library,

allowing any program that can link a dll access to the features of the CSPS. See

Section 3, User Interface Development of the CSPS User Manual (Provided in

Appendix B)

 Addition of new data acquisition devices. The data acquisition device chosen for

the initial version of the CSPS was certainly limiting. While the DT-9812 unit

performed admirably, the USB interface eliminates the ability to use true real-

time systems as USB is inherently non-deterministic. Other developers are

encouraged to provide their own data acquisition devices and their own physical

port implementations that do not suffer such restrictions. This would open up

real-time development for the CSPS and improve the accuracy and complexity of

the plants simulated, as samples could be made at much higher rates. See the

Data Acquisition Device Development section of the CSPS User Manual

(provided in Appendix B) for more information on how to create and integrate

new devices.

 Addition of new methods. The CSPS provides basic methods for discretization

and state space realization that can certainly be improved upon. More complex

and accurate methods for converting continuous plants to discrete, or for finding a

set of state space equations from transfer functions exist and would only enhance

118

the ability of the CSPS to accurately simulate plants. Engineering Value

arithmetic can be altered, and would see a performance improvement by

switching from true floating point to integer based fixed point systems for

example.

119

5. Conclusion

The goal of this Thesis was to provide a framework upon which known modeled

plants could be launched and simulated as part of a Hardware-In-The-Loop system with

an eye toward aiding education in controls development. Control system education

benefits greatly by having students develop real controllers that are connected to real

systems to monitor the success or failure of their designs. Such physical systems can be

expensive or dangerous, making their use in an educational laboratory environment

difficult at best. The Control System Plant Simulator provides a suite of applications that

simulate plants with physical output accurate enough that students can design and

develop controllers for them. The framework provides plenty of hooks upon which end

users may attach their own interfaces and data acquisition systems. It is flexible and can

be as complex or simple as needed.

In short, the goals for the project were met successfully. An expandable

framework for the simulation of plants has been created. The CSPS is provided at no

cost to all as an open source system with the hope that end users customize it, make it

their own, and share their alterations with all.

120

Bibliography

[1] Ardence, Release Notes RTX
®
 version 6.0. Accessed 2006,

<http://www.ardence.com/>

[2] Audemard, Fabrice, Condamin, Isabelle, Hazel, Terence. “Facilitating Plant

Operation and Maintenance Using an Electrical Network monitoring and Control

System Simulation Tool”. In the Proceedings of the Petroleum and Chemical

Industry Technical Conference, 2004, 51
st
 Annual Conference. Sept. 2004.

[3] Banerjee, S. Dynamics of Physical Systems. Professor Department of Electrical

Engineering, Indian Institute of Technology. Kharagpur India, accessed 2007

<http://www.ee.iitkgp.ernet.in/~soumitro/dops/>

[4] Cheever, Erik. Linear Physical Systems Analysis Lecture Notes. Professor and

Chair Department of Engineering Swarthmore College. 2006, accessed 2006

<http://www.swarthmore.edu/NatSci/echeeve1/Class/e12/E12Schedule.html>

[5] Christensson, M., Eskilson, J., Forsgren, D., Halberg, G., Hogberg, J.,

Magnusson, P.S., Moestedt, A., Werner, B. “Simics: A full system simulation

platform” in Computer. Volume 35, issue 2. pp 50-58 2002.

[6] Coelho, Claudionor, De Micheli, Giovanni, Gupta, Rajesh K. “Synthesis and

Simulation of Digital Systems Containing Interacting Hardware and Software

Components”. In Proceedings of the Design Automation Conference, pp. 225-

230, 1992.

[7] Copstein, B., Mora, M. “An Environment for Formal Modeling and Simulation

of control Systems.“ Proceedings of the 33
rd

 Annual Simulation Symposium.

2000.

[8] Douglass, B. Doing Hard Time Developing Real-Time Systems with UML,

Objects, Frameworks, and Patterns. Addison-Wesley Boston MA, 1999.

[9] Dorf, R., Bishop, R. Modern Control Systems Ninth Edition. Prentice Hall New

Jersey, 2001.

[10] El-Hajj, A., Kabalan, K., Khoury, S. “A Linear Control System Simulation

Toolbox Using Spreadsheets” Control Systems Magazine, IEEE. Volume 20,

Issue 6, 2000.

[11] Flannery, Brian P., Press, William H., Teukolsky, Saul A., Vetterling, William T.

Numerical Recipes in C: The Art of Scientific Computing, Second Edition.

1992, Cambridge University Press.

[12] Foss, B.A., Eikaas, T.I., Hovd, M., “Merging Physical Experiments Back Into The

Learning Arena”, Proceedings of the 2000 American Control Conference. 2000,

Chicago IL.

[13] Franklin, G., Powell, J., Workman, M. Digital Control of Dynamic Systems.

Addison Wesley Longman Inc. Menlo Park CA, 1998

[14] Franklin, G., Powell, J., Emami-Naeini, A. Feedback Control of Dynamic

Systems – Third Edition. 1994 Addison-Wesley Publishing Company.

[15] Gomez, Martin. “Hardware-in-the-Loop Simulation.” Embedded.com.

11/30/2001, accessed 2006

<http://www.embedded.com/story/OEG20011129S0054>

121

[16] Grega, Wojciech. “Hardware-in-the-loop Simulation and Its Application in

Control Education”. Department of Automatics, Univeristy of Mining and

Mettaluargy Krakow Poland. From Frontiers in Education Conference, 1999.

FIE ‟99. 29th Annual. Nov 1999.

[17] Hartson, Rex H. “Digital Control Simulation System.” Annual ACM IEEE

Design Automation Conference, 6
th

 annual conference on Design Automation.

Pages 113-144. 1969. ACM Press, New York, NY.

[18] Heinrich, Mark, Ofelt, David, Olukotun, Kunle. “Digital System Simulation:

Methodologies and Examples” in the Proceedings of the 35
th

 annual conference

on Design automation, pp 658-663. 1998

[19] Inoue, A., Kroumov, V., Shibayama, K. “Interactive Learning Tools for

Enhancing the Education in Control Systems.” Proceedings on the 33
rd

 Annual

Conference on Frontiers in Education, 2003.

[20] Jackson, L. Digital Filters and Signal Processing Second Edition. Kluwer

Academic Publishers. 1989, Norwell MA.

[21] Juang, J-C., “Controller Rapid Prototyping and its Incorporation in Control

Education”, Proceedings of the 4th IFAC Symposium on Advances in Control

Education July 14-16, 1997, Istanbul.

[22] Klee, H “Simulation and Design of a Digital Control System with TUTSIM”

IEEE Transactions on Education, Volume 34, issue 1. 1991.

[23] Klee, H., Dumas, J. “Theory, Simulation, Experimentation: An Integrated

Approach to Teaching Digital Control Systems.” IEEE Transactions on

Education, Feb 1994, Volume 37, Issue 1.

[24] Messner, William C., Tilbury, Dawn Control Tutorials For Matlab and Simulink.

A Web Based Approach. 1998 Prentice Hall New Jersey.

[25] Messner, William C., Smoker, Jason, Tilbury, Dawn, Tseng, Ian Modeling

Tutorials for MATLAB and Simulink. Accessed 2006.

<http://www.me.cmu.edu/ctms/>

[26] Metzger, M., Moor, S.S., Piergiovanni, P.R. “Process Control Kits: a Hardware

and Software Resource” in Proceedings of the 35
th

 Annual Conference on

Frontiers in Education, 2005.

[27] Murrer, Robert “Technologies for Synthetic Environments: Hardware-In-The-

Loop Testing”. September 2003, SPIE-International Society for Optical Engines

[28] Ogata, Katsuhiko. Modern Control Engineering Fourth Edition. 2002 Prentice

Hall New Jersey

[29] Olukotun, K., Heinrich, M., Ofelt, D. “Digital System simulation:

Methodologies and Examples”, Proceedings of the 1998 Design Automation

Conference. 15-19 June 1998.

[30] Oppenheim, A., Willsky, A., Nawam, S. Signals and Systems Second Edition.

Prentice Hall New Jersey. 1997.

[31] Oppenheim, A., Schafer, R. Discrete-Time Signal Processing Second Edition.

Prentice Hall New Jersey1999.

[32] Roher, C., Perdikaris, G. “Digital Control System Simulation Using Personal

Computers” 16th Annual Conference of IEEE Industrial Electronics Society,

1990 IECON

122

[33] Saco, Roberto, Pires, Eduardo, Godfrid, Carlos “Real Time Controlled

Laboratory Plant for Control Education” 32nd Annual Frontiers in Education.

Nov. 2002.

[34] Sasaki N., Ohyama Y., Ikebe J., “Design Exercises for Robust Controller Using a

Double Inverted Pendulum”, Proceedings of the 4th IFAC Symposium on

Advances in Control Education, July 14-16, 1997, Istanbul.

[35] Shaw A. Real-Time Systems and Software John Wiley and Sons, New York NY

2001

[36] Thakkar Nishant. Real-Time Control System Framework. Computer Science

Capstone Thesis for RIT. Version 4.1, 6/7/2006

[37] Thrasyvoulou, K., Tsakalis, K.k Spanias, A., “J-DSP-Control: A Control Systems

Simulation Environment” Department of Electrical Engineering, Arizona State

University, Tempe AZ.

[38] Verwer, Andy. “The Role of Process Simulation in the Control System Software

Life Cycle”. IEE Colloquia on the Application of IEC61131 in Industrial

Control: Improve Your Bottom-Line Through High value Industrial Control

Systems (Ref. No. 2000/081) 2000

[39] Zhen Li, Kyte, M., Johnson, B., “Hardware-in-the-loop real-time simulation

interface software design” Proceedings on the 7th international IEEE conference

on Intelligent Transportation Systems”, Oct 2004.

i

Appendix A: Directory Structure

The following appendix consists of listings of all of the contents of each directory in the

CSPS package.

The Legend for directory listings is as follows

Folder
File

Root Directory

The root directory is the top level directory in the CSPS package. It is organized as

follows:

CSPS
- CODE
- DOCUMENTATION

- Control System Plant Simulator Thesis.pdf
- Users Guide.pdf
- Directory Structure.pdf

- RTX_PKG

- CSPS_RTX_CompKernel.rtss
- CSPS_W32_Kernel_RTX_PORT.exe
- ExampleUI.exe
- SimInterface.exe

- SimpleUI.exe
- UiWinInterface.dll

- WIN_PKG
- CSPS_W32_CompKernel.exe

- CSPS_W32_Kernel.exe

- ExampleUI.exe

- SimpleUI.exe

- UiWinInterface.dll

The CODE directory contains all of the source code used to create the CSPS, and will be

described fully in the sections that follow.

The DOCUMENTATION directory contains the documentation associated with the

CSPS. The user‟s guide, and original thesis are provided here.

ii

The RTX_PKG directory contains the compiled executables and libraries needed to

launch the RTX version of the CSPS. This version has been built only for use with the

simulated interface, but future data acquisition devices may be ported to it.

The WIN_PKG directory contains the compiled executables and libraries needed to

launch the Win32 version of the CSPS. This version has been built to work with Data

Translation‟s DT-9812 data acquisition device, through future data acquisition devices

may be ported to it. Note that NO aspect of this version of the CSPS runs in real time.

CODE Directory

The CODE directory contains all of the source code and projects needed to create the

CSPS.

- CODE
- CSPS_RTX_CompKernel

- Utils

- LocalDefinitions.h
- StdAfx.h

- CSPS_RTX_CompKernel.cpp
- CSPS_RTX_CompKernel.dsp

- CSPS_RTX_CompKernel.h
- CSPS_RTX_CompKernel.plg

- CSPS_W32_CompKernel
- Utils

- LocalDefinitions.h
- CSPS_W32_CompKernel.cpp

- CSPS_W32_CompKernel.dsp
- CSPS_W32_CompKernel.plg
- StdAfx.cpp
- StdAfx.h

- CSPS_W32_Kernel
- Utils

- LocalDefinitions.h
- CSPS.ico
- CSPS_W32_Kernel.cpp

- CSPS_W32_Kernel.dsp
- CSPS_W32_Kernel.plg
- IconScript.aps
- IconScript.rc
- resource.h

- StdAfx.cpp
- StdAfx.h

- CSPS_W32_Kernel_RTX_PORT

iii

- Utils

- LocalDefinitions.h
- StdAfx.h

- CSPS.ico
- CSPS_W32_Kernel_RTX_PORT.cpp
- CSPS_W32_Kernel_RTX_PORT.dsp
- CSPS_W32_Kernel_RTX_PORT.h

- CSPS_W32_Kernel_RTX_PORT.plg
- IconScript.rc
- resource.h
- StdAfx.h

- Shared
- SimInterface

- Utils

- LocalDefinitions.h
- InputScriptRunner.cpp
- InputScriptRunner.h
- OutputPrinter.cpp

- OutputPrinter.h
- PhysicalPort.h
- SimInterface.cpp
- SimInterface.dsp

- SimInterface.h

- SimInterface.plg
- SimPortInterface.cpp
- SimPortInterface.h

- StdAfx.cpp
- StdAfx.h

- SimpleUI
- Utils

- LocalDefinitions.h

- UiWinInterface.h
- SimpleUI.cpp
- SimpleUI.dsp
- SimpleUI.plg

- StdAfx.cpp
- StdAfx.h

- UiWinInterface
- Utils

- LocalDefinitions.h
- StdAfx.cpp

- StdAfx.h
- UiWinInterface.cpp

iv

- UiWInInterface.def

- UiWinInterface.dsp
- UiWinInterface.h

- UiWinInterface.plg

- VB
- CSPS_Main.frm
- ExampleUI.vbp

- ExampleUI.vbw
- GlobalModule.bas
- InitialCondForm.frm
- IOUpdateForm.frm

- NonLinearForm.frm

- NumDenomForm.frm
- NumDenomMatrix.frm
- PseudoPortForm.frm
- SchedulePortForm.frm

- SetDMethodForm.frm
- StateSpaceForm.frm
- ZPKForm.frm
- ZpkMatrixForm.frm

The CSPS_RTX_CompKernel directory contains all of the code needed to create the

RTX port of the Computational Kernel. Note that this project accesses a large number of

code files stored in the shared directory.

The CSPS_W32_CompKernel directory contains all of the code needed to create the

Win32 port of the Computational Kernel. Note that this project accesses a large number

of code files stored in the shared directory.

The CSPS_W32_Kernel directory contains all of the code needed to create the Win32

port of the system Kernel. Note that this project accesses a large number of code files

stored in the shared directory.

The CSPS_W32_Kernel_RTX_PORT directory contains all of the code needed to create

the RTX port of the system Kernel. Note that this project accesses a large number of

code files stored in the shared directory.

The Shared directory contains all code used by more than one project. There is a

significant number of files stored here, and it will be discussed in a future section.

The SimInterface directory contains all of the code needed to create the simulated

interface to be used with the RTX port of the Control System Plant Simulator.

The SimpleUI directory contains all of the code needed to build the example console user

interface.

v

The UiWinInterface directory contains all of the code needed to build the

UiWinInterface.dll library that may be used to simplify the user interface development

process.

The VB directory contains a visual basic project that provides an example of a Visual

Basic GUI that uses the UiWInInterface library to communicate with the CSPS.

Shared Directory Map

The Shared directory contains all code that is used by more than one process space. The

vast majority of the CSPS code is stored here.

- Shared
- CompKernel
- Descriptors
- Interfaces
- Kernel
- OsAbstraction

The shared directory contains five directories, each of which will be described in detail in

the following sections.

CompKernel Directory Map

 The CompKernel directory is a subdirectory of the Shared directory. It contains

all of the code specific to the computational kernel. This code is shared between different

ports of the Computational Kernel process.

- CompKernel
- Plant

- Plant.cpp

- Plant.h
- PlantWatchdog.cpp
- PlantWatchdog.h

- Ports
- DtPorts

- Lib

- Oldaapi32.lib
- Oldaapi.h
- Oldacfg.h
- Oldadefs.h

- Oldsptch.h
- Olerrors.h
- OLMEM32.lib

vi

- Olmem.h

- Oltypes.h
- DTPhysicalPort.cpp

- DTPhysicalPort.h
- DTPhysicalPortCache.cpp
- DTPhysicalPortCache.h

- SimPorts

- SimPhysicalPort.cpp
- SimPhysicalPort.h
- SimPhysicalPortCache.cpp
- SimPhysicalPortCache.h

- SimPortInterface.cpp

- SimPortInterface.h
- AnalogPseudoPort.cpp
- AnalogPseudoPort.h

BinaryPseudoPort.cpp

- BinaryPseudoPort.h
- PhysicalPort.cpp
- PhysicalPort.h

- PhysicalPortCache.cpp
- PhysicalPortCache.h
- PortManager.cpp
- PortManager.h

- PseudoPort.cpp

- PseudoPort.h

- Utils
- EngineeringValue.cpp
- EngineeringValue.h

- EngineeringValueMatrix.cpp
- EngineeringValueMatrix.h
- PortValuePair.h

The Plant directory contains the code related to the plant object in the Computational

Kernel process. This includes both the plant and the plant watchdog.

The Ports directory provides all code related to ports in the system. Physical ports,

including specific implementations of the physical ports such as the DT Ports and the

Simulated Interface Ports, pseudo ports, and port manager code is all stored here.

The Utils directory contains the utilities used by the Computational Kernel processes.

This includes all engineering value related code, as well as the PortValuePair descriptor.

vii

Descriptors Directory Map

Descriptors are header files that contain the structures that get passed through the CSPS.

The Descriptors directory in the Shared folder contains the major descriptors for the

system.

- Descriptors

- PhysicalPortDescriptor.h

- PseudoPortDescriptor.h

- StateSpaceDescriptor.h

- TFDescriptor.h

Interfaces Directory Map

The Interfaces Directory in the Shared folder contains all interface related code for every

interface in the system.

- Interfaces
- CompKernelInterfaces

- CompToWinOutgoingInterface.cpp
- CompToWinOutgoingInterface.h
- WinToCompIncomingInterface.cpp

- WinToCompIncomingInterface.h

- DataTypes

- CompToWin.cpp
- CompToWin.h
- ConfigParams.h

- UiToWin.cpp
- UiToWin.h
- WinToComp.cpp
- WinToComp.h

- WinToUi.cpp
- WinToUi.h

- KernelInterfaces
- CompToWinIncomingInterface.cpp

- CompToWinIncomingInterface.h

- UiToWinIncomingInterface.cpp

- UiToWinIncomingInterface.h

- WinToCompOutgoingInterface.cpp

- WinToCompOutgoingInterface.h

- WinToUiOutgoingInterface.cpp

- WinToUiOutgoingInterface.h

- UiInterfaces

viii

- UiToWinOutgoingInterface.cpp

- UiToWinOutgoingInterface.h
- WinToUiIncomingInterface.cpp

- WinToUiIncomingInterface.h
- IncomingInterface.cpp
- IncomingInterface.h
- OutgoingInterface.cpp

- OutgoingInterface.h

The CompKernel directory contains the code necessary to establish the Computational

Kernel‟s side of the Win32 Kernel-Computational Kernel interface.

The DataTypes directory contains the code that defines all of the individual data types

passed between interfaces. Interface semaphore names, Shared memory structures, and

interface structures are defined in these files.

The KernelInterfaces directory contains the code necessary to establish the Win32

Kernel‟s side of the Win32 Kernel-Computational Kernel interface, and the Win32

Kernel‟s side of the Win32 Kernel-User Interface Process interface.

The UiInterfaces directory contains the code necessary to establish the User Interface‟s

side of the Win32 Kernel-User Interface Process interface.

Kernel Directory Map

The Kernel Directory in the Shared folder contains all code used by the Win32 Kernel

processes.

- Kernel
- Managers

- FileManager.cpp

- FileManager.h
- LogManager.cpp
- LogManager.h
- PlantConfigurationManager.cpp

- PlantConfigurationManager.h

- PlantFileManager.cpp
- PlantFIleManager.h
- PortConfigurationManager.cpp

- PortConfigurationManager.h
- PseudoPortFileManager.cpp
- PseudoPortFileManager.h
- SystemManagement.cpp

- SystemManagement.h

ix

- Utils

- Complex.cpp
- Complex.h

The Managers subfolder contains all of the manager code that makes up the bulk

of the Win32 Kernel process.

The Utils subfolder contains the Complex structure, used for complex arithmetic.

OS Abstraction Directory Map

The OsAbstraction directory contains all of the Operating system abstraction files.

Should the CSPS be ported to a different platform, these files would have to be altered.

- OsAbstraction
- FileInterface.cpp
- FileInterface.h
- InterfaceSemaphore.cpp

- InterfaceSemaphore.h
- SharedMemoryInterface.cpp
- SharedMemoryInterface.h
- Thread.cpp

- Thread.h

Complete Directory Map

The following listing provides every directory in the package. Note that files have been

hidden in this listing.

CSPS
- CODE

- CSPS_RTX_CompKernel
- Utils

- CSPS_W32_CompKernel
- Utils

- CSPS_W32_Kernel
- Utils

- CSPS_W32_Kernel_RTX_PORT
- Utils

- Shared
- CompKernel

- Plant
- Ports

x

- DtPorts
- lib

- SimPorts
- Utils

- Descriptors
- Interfaces

- CompKernelInterfaces
- DataTypes
- KernelInterfaces
- UiInterfaces

- Kernel
- Managers
- Utils

- OsAbstraction
- PhysicalPorts

- SimInterface
- Utils

- SimpleUI
- Utils

- UiWinInterface
- Utils

- VB
- DOCUMENTATION
- RTX_PKG
- WIN_PKG

xi

Appendix B: User Manual

